Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,098 Bytes
1b98b3b 36f3f37 1b98b3b 36f3f37 1b98b3b 8f86518 1b98b3b 36f3f37 1b98b3b 36f3f37 1b98b3b 36f3f37 1b98b3b 36f3f37 1b98b3b 36f3f37 1b98b3b 36f3f37 1b98b3b 36f3f37 1b98b3b 36f3f37 1b98b3b 36f3f37 1b98b3b 36f3f37 1b98b3b 36f3f37 1b98b3b 36f3f37 1b98b3b 36f3f37 1b98b3b 36f3f37 1b98b3b 8f86518 1b98b3b 36f3f37 1b98b3b 36f3f37 1b98b3b b553066 36f3f37 b553066 36f3f37 b553066 36f3f37 1b98b3b b553066 22e4707 36f3f37 22e4707 b553066 36f3f37 b553066 1b98b3b 36f3f37 1b98b3b b553066 36f3f37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import random
import requests
import json
import ast
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont
import gradio as gr
import torch
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, AutoModelForCausalLM
from qwen_vl_utils import process_vision_info
from spaces import GPU
from gradio.themes.ocean import Ocean
# --- Config ---
model_qwen_id = "Qwen/Qwen2.5-VL-3B-Instruct"
model_moondream_id = "vikhyatk/moondream2"
model_qwen = Qwen2_5_VLForConditionalGeneration.from_pretrained(
model_qwen_id, torch_dtype="auto", device_map="auto"
)
model_moondream = AutoModelForCausalLM.from_pretrained(
model_moondream_id,
revision="2025-06-21",
trust_remote_code=True,
device_map={"": "cuda"}
)
def extract_model_short_name(model_id):
return model_id.split("/")[-1].replace("-", " ").replace("_", " ")
model_qwen_name = extract_model_short_name(model_qwen_id) # β "Qwen2.5 VL 3B Instruct"
model_moondream_name = extract_model_short_name(model_moondream_id) # β "moondream2"
min_pixels = 224 * 224
max_pixels = 1024 * 1024
processor_qwen = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-3B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
#processor_moondream = AutoProcessor.from_pretrained("vikhyatk/moondream2", trust_remote_code=True)
label2color = {}
vivid_colors = ["#e6194b", "#3cb44b", "#0082c8", "#f58231", "#911eb4", "#46f0f0", "#f032e6", "#d2f53c", "#fabebe", "#008080", "#e6beff", "#aa6e28", "#fffac8", "#800000", "#aaffc3", "#808000", "#ffd8b1", "#000080", "#808080", "#000000"]
def get_color(label, explicit_color=None):
if explicit_color:
return explicit_color
if label not in label2color:
index = len(label2color) % len(vivid_colors)
label2color[label] = vivid_colors[index]
return label2color[label]
def create_annotated_image(image, json_data, height, width):
try:
json_data = json_data.split('```json')[1].split('```')[0]
bbox_data = json.loads(json_data)
except Exception:
return image
original_width, original_height = image.size
x_scale = original_width / width
y_scale = original_height / height
scale_factor = max(original_width, original_height) / 512
draw_image = image.copy()
draw = ImageDraw.Draw(draw_image)
try:
font = ImageFont.truetype("DejaVuSans-Bold.ttf", int(12 * scale_factor))
except:
font = ImageFont.load_default()
for item in bbox_data:
label = item.get("label", "")
color = get_color(label, item.get("color", None))
if "bbox_2d" in item:
bbox = item["bbox_2d"]
scaled_bbox = [
int(bbox[0] * x_scale),
int(bbox[1] * y_scale),
int(bbox[2] * x_scale),
int(bbox[3] * y_scale)
]
draw.rectangle(scaled_bbox, outline=color, width=int(2 * scale_factor))
draw.text(
(scaled_bbox[0], max(0, scaled_bbox[1] - int(15 * scale_factor))),
label,
fill=color,
font=font
)
if "point_2d" in item:
x, y = item["point_2d"]
scaled_x = int(x * x_scale)
scaled_y = int(y * y_scale)
r = int(5 * scale_factor)
draw.ellipse((scaled_x - r, scaled_y - r, scaled_x + r, scaled_y + r), fill=color, outline=color)
draw.text((scaled_x + int(6 * scale_factor), scaled_y), label, fill=color, font=font)
return draw_image
def create_annotated_image_normalized(image, json_data, label="object", explicit_color=None):
if not isinstance(json_data, dict):
return image
original_width, original_height = image.size
scale_factor = max(original_width, original_height) / 512
draw_image = image.copy()
draw = ImageDraw.Draw(draw_image)
try:
font = ImageFont.truetype("DejaVuSans-Bold.ttf", int(12 * scale_factor))
except:
font = ImageFont.load_default()
color = get_color(label, explicit_color)
for point in json_data.get("points", []):
x = int(point["x"] * original_width)
y = int(point["y"] * original_height)
radius = int(4 * scale_factor)
draw.ellipse([x - radius, y - radius, x + radius, y + radius], fill=color, outline=color)
for item in json_data.get("objects", []):
x_min = int(item["x_min"] * original_width)
y_min = int(item["y_min"] * original_height)
x_max = int(item["x_max"] * original_width)
y_max = int(item["y_max"] * original_height)
draw.rectangle([x_min, y_min, x_max, y_max], outline=color, width=int(2 * scale_factor))
draw.text((x_min, max(0, y_min - int(15 * scale_factor))), label, fill=color, font=font)
if "reasoning" in json_data:
for grounding in json_data["reasoning"].get("grounding", []):
for x_norm, y_norm in grounding.get("points", []):
x = int(x_norm * original_width)
y = int(y_norm * original_height)
radius = int(4 * scale_factor)
draw.ellipse([x - radius, y - radius, x + radius, y + radius], fill=color, outline=color)
return draw_image
@GPU
def detect_qwen(image, prompt):
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": prompt},
],
}
]
text = processor_qwen.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor_qwen(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to(model_qwen.device)
generated_ids = model_qwen.generate(**inputs, max_new_tokens=1024)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor_qwen.batch_decode(
generated_ids_trimmed, do_sample=True, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
input_height = inputs['image_grid_thw'][0][1] * 14
input_width = inputs['image_grid_thw'][0][2] * 14
annotated_image = create_annotated_image(image, output_text, input_height, input_width)
return annotated_image, output_text
@GPU
def detect_moondream(image, prompt, category_input):
if category_input in ["Object Detection", "Visual Grounding + Object Detection"]:
output_text = model_moondream.detect(image=image, object=prompt)
elif category_input == "Visual Grounding + Keypoint Detection":
output_text = model_moondream.point(image=image, object=prompt)
else:
output_text = model_moondream.query(image=image, question=prompt, reasoning=True)
annotated_image = create_annotated_image_normalized(image=image, json_data=output_text, label="object", explicit_color=None)
return annotated_image, output_text
@GPU
def detect(image, prompt_model_1, prompt_model_2, category_input):
STANDARD_SIZE = (1024, 1024)
image.thumbnail(STANDARD_SIZE)
annotated_image_model_1, output_text_model_1 = detect_qwen(image, prompt_model_1)
annotated_image_model_2, output_text_model_2 = detect_moondream(image, prompt_model_2, category_input)
return annotated_image_model_1, output_text_model_1, annotated_image_model_2, output_text_model_2
css_hide_share = """
button#gradio-share-link-button-0 {
display: none !important;
}
"""
# --- Gradio Interface ---
with gr.Blocks(theme=Ocean(), css=css_hide_share) as demo:
gr.Markdown("# π Object Understanding with Vision Language Models")
gr.Markdown("### Explore object detection, visual grounding, keypoint detection, and/or object counting through natural language prompts.")
gr.Markdown("""
*Powered by [Qwen2.5-VL 3B](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) and [Moondream 2B (revision="2025-06-21")](https://huggingface.co/vikhyatk/moondream2). Inspired by the tutorial [Object Detection and Visual Grounding with Qwen 2.5](https://pyimagesearch.com/2025/06/09/object-detection-and-visual-grounding-with-qwen-2-5/) on PyImageSearch.*
*Moondream 2B uses the [moondream.py API](https://huggingface.co/vikhyatk/moondream2/blob/main/moondream.py), selecting `detect` for categories with "Object Detection" `point` for the ones with "Keypoint Detection", and reasoning-based querying for all others.*
""")
with gr.Row():
with gr.Column(scale=2):
image_input = gr.Image(label="Upload an image", type="pil", height=400)
prompt_input_model_1 = gr.Textbox(
label=f"Enter your prompt for {model_qwen_name}",
placeholder="e.g., Detect all red cars in the image"
)
prompt_input_model_2 = gr.Textbox(
label=f"Enter your prompt for {model_moondream_name}",
placeholder="e.g., Detect all blue cars in the image"
)
categories = [
"Object Detection",
"Object Counting",
"Visual Grounding + Keypoint Detection",
"Visual Grounding + Object Detection",
"General query"
]
category_input = gr.Dropdown(
choices=categories,
label="Category",
interactive=True
)
generate_btn = gr.Button(value="Generate")
with gr.Column(scale=1):
output_image_model_1 = gr.Image(type="pil", label=f"Annotated image for {model_qwen_name}", height=400)
output_textbox_model_1 = gr.Textbox(label=f"Model response for {model_qwen_name}", lines=10)
with gr.Column(scale=1):
output_image_model_2 = gr.Image(type="pil", label=f"Annotated image for {model_moondream_name}", height=400)
output_textbox_model_2 = gr.Textbox(label=f"Model response for {model_moondream_name}", lines=10)
gr.Markdown("### Examples")
example_prompts = [
["examples/example_1.jpg", "Detect all objects in the image and return their locations and labels.", "objects", "Object Detection"],
["examples/example_2.JPG", "Detect all the individual candies in the image and return their locations and labels.", "candies", "Object Detection"],
["examples/example_1.jpg", "Count the number of red cars in the image.", "Count the number of red cars in the image.", "Object Counting"],
["examples/example_2.JPG", "Count the number of blue candies in the image.", "Count the number of blue candies in the image.", "Object Counting"],
["examples/example_1.jpg", "Identify the red cars in this image, detect their key points and return their positions in the form of points.", "red cars", "Visual Grounding + Keypoint Detection"],
["examples/example_2.JPG", "Identify the blue candies in this image, detect their key points and return their positions in the form of points.", "blue candies", "Visual Grounding + Keypoint Detection"],
["examples/example_1.jpg", "Detect the red car that is leading in this image and return its location and label.", "leading red car", "Visual Grounding + Object Detection"],
["examples/example_2.JPG", "Detect the blue candy located at the top of the group in this image and return its location and label.", "blue candy located at the top of the group", "Visual Grounding + Object Detection"],
]
gr.Examples(
examples=example_prompts,
inputs=[image_input, prompt_input_model_1, prompt_input_model_2, category_input],
label="Click an example to populate the input"
)
generate_btn.click(fn=detect, inputs=[image_input, prompt_input_model_1, prompt_input_model_2, category_input], outputs=[output_image_model_1, output_textbox_model_1, output_image_model_2, output_textbox_model_2])
if __name__ == "__main__":
demo.launch()
|