File size: 12,698 Bytes
1b98b3b
 
 
36f3f37
089817d
1b98b3b
 
 
 
 
 
36f3f37
1b98b3b
 
8f86518
1b98b3b
 
36f3f37
 
 
 
 
 
 
 
 
 
 
1b98b3b
 
36f3f37
 
 
 
 
 
 
1b98b3b
36f3f37
 
 
1b98b3b
 
36f3f37
1b98b3b
 
 
 
 
36f3f37
 
1b98b3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36f3f37
1b98b3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36f3f37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b98b3b
36f3f37
 
1b98b3b
 
 
 
 
 
 
 
 
 
089817d
36f3f37
1b98b3b
36f3f37
1b98b3b
 
 
 
 
36f3f37
1b98b3b
36f3f37
1b98b3b
 
 
36f3f37
1b98b3b
 
089817d
1b98b3b
 
 
 
 
 
089817d
 
1b98b3b
36f3f37
 
 
089817d
36f3f37
 
 
 
 
 
089817d
36f3f37
 
 
089817d
 
 
36f3f37
 
 
 
089817d
 
36f3f37
089817d
36f3f37
1b98b3b
 
 
 
 
 
 
8f86518
1b98b3b
36f3f37
1b98b3b
 
36f3f37
 
1b98b3b
 
b553066
36f3f37
b553066
36f3f37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b553066
 
 
36f3f37
 
089817d
36f3f37
 
 
 
089817d
1b98b3b
b553066
 
7a7521a
 
36f3f37
 
7a7521a
 
 
 
b553066
 
 
 
36f3f37
b553066
 
1b98b3b
089817d
 
 
 
 
 
 
 
 
1b98b3b
b553066
36f3f37
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import random
import requests
import json
import ast
import time

import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont

import gradio as gr
import torch
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, AutoModelForCausalLM
from qwen_vl_utils import process_vision_info
from spaces import GPU
from gradio.themes.ocean import Ocean

# --- Config ---
model_qwen_id = "Qwen/Qwen2.5-VL-3B-Instruct"
model_moondream_id = "vikhyatk/moondream2"

model_qwen = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    model_qwen_id, torch_dtype="auto", device_map="auto"
)
model_moondream = AutoModelForCausalLM.from_pretrained(
    model_moondream_id,
    revision="2025-06-21",
    trust_remote_code=True,
    device_map={"": "cuda"}
)

def extract_model_short_name(model_id):
    return model_id.split("/")[-1].replace("-", " ").replace("_", " ")

model_qwen_name = extract_model_short_name(model_qwen_id)  # β†’ "Qwen2.5 VL 3B Instruct"
model_moondream_name = extract_model_short_name(model_moondream_id)  # β†’ "moondream2"


min_pixels = 224 * 224
max_pixels = 1024 * 1024
processor_qwen = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-3B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
#processor_moondream = AutoProcessor.from_pretrained("vikhyatk/moondream2", trust_remote_code=True)

label2color = {}
vivid_colors = ["#e6194b", "#3cb44b", "#0082c8", "#f58231", "#911eb4", "#46f0f0", "#f032e6", "#d2f53c", "#fabebe", "#008080", "#e6beff", "#aa6e28", "#fffac8", "#800000", "#aaffc3", "#808000", "#ffd8b1", "#000080", "#808080", "#000000"]

def get_color(label, explicit_color=None):
    if explicit_color:
        return explicit_color
    if label not in label2color:
        index = len(label2color) % len(vivid_colors)
        label2color[label] = vivid_colors[index]
    return label2color[label]

def create_annotated_image(image, json_data, height, width):
    try:
        json_data = json_data.split('```json')[1].split('```')[0]
        bbox_data = json.loads(json_data)
    except Exception:
        return image

    original_width, original_height = image.size
    x_scale = original_width / width
    y_scale = original_height / height

    scale_factor = max(original_width, original_height) / 512

    draw_image = image.copy()
    draw = ImageDraw.Draw(draw_image)

    try:
        font = ImageFont.truetype("DejaVuSans-Bold.ttf", int(12 * scale_factor))
    except:
        font = ImageFont.load_default()

    for item in bbox_data:
        label = item.get("label", "")
        color = get_color(label, item.get("color", None))

        if "bbox_2d" in item:
            bbox = item["bbox_2d"]
            scaled_bbox = [
                int(bbox[0] * x_scale),
                int(bbox[1] * y_scale),
                int(bbox[2] * x_scale),
                int(bbox[3] * y_scale)
            ]
            draw.rectangle(scaled_bbox, outline=color, width=int(2 * scale_factor))
            draw.text(
                (scaled_bbox[0], max(0, scaled_bbox[1] - int(15 * scale_factor))),
                label,
                fill=color,
                font=font
            )

        if "point_2d" in item:
            x, y = item["point_2d"]
            scaled_x = int(x * x_scale)
            scaled_y = int(y * y_scale)
            r = int(5 * scale_factor)
            draw.ellipse((scaled_x - r, scaled_y - r, scaled_x + r, scaled_y + r), fill=color, outline=color)
            draw.text((scaled_x + int(6 * scale_factor), scaled_y), label, fill=color, font=font)

    return draw_image

def create_annotated_image_normalized(image, json_data, label="object", explicit_color=None):
    if not isinstance(json_data, dict):
        return image

    original_width, original_height = image.size
    scale_factor = max(original_width, original_height) / 512
    draw_image = image.copy()
    draw = ImageDraw.Draw(draw_image)

    try:
        font = ImageFont.truetype("DejaVuSans-Bold.ttf", int(12 * scale_factor))
    except:
        font = ImageFont.load_default()

    color = get_color(label, explicit_color)

    for point in json_data.get("points", []):
        x = int(point["x"] * original_width)
        y = int(point["y"] * original_height)
        radius = int(4 * scale_factor)
        draw.ellipse([x - radius, y - radius, x + radius, y + radius], fill=color, outline=color)

    for item in json_data.get("objects", []):
        x_min = int(item["x_min"] * original_width)
        y_min = int(item["y_min"] * original_height)
        x_max = int(item["x_max"] * original_width)
        y_max = int(item["y_max"] * original_height)
        draw.rectangle([x_min, y_min, x_max, y_max], outline=color, width=int(2 * scale_factor))
        draw.text((x_min, max(0, y_min - int(15 * scale_factor))), label, fill=color, font=font)

    if "reasoning" in json_data:
        for grounding in json_data["reasoning"].get("grounding", []):
            for x_norm, y_norm in grounding.get("points", []):
                x = int(x_norm * original_width)
                y = int(y_norm * original_height)
                radius = int(4 * scale_factor)
                draw.ellipse([x - radius, y - radius, x + radius, y + radius], fill=color, outline=color)

    return draw_image



@GPU
def detect_qwen(image, prompt):

    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": image},
                {"type": "text", "text": prompt},
            ],
        }
    ]

    t0 = time.perf_counter()
    text = processor_qwen.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor_qwen(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    ).to(model_qwen.device)

    generated_ids = model_qwen.generate(**inputs, max_new_tokens=1024)
    generated_ids_trimmed = [
        out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor_qwen.batch_decode(
        generated_ids_trimmed, do_sample=True, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )[0]
    elapsed_ms = (time.perf_counter() - t0) * 1_000

    input_height = inputs['image_grid_thw'][0][1] * 14
    input_width = inputs['image_grid_thw'][0][2] * 14

    annotated_image = create_annotated_image(image, output_text, input_height, input_width)

    time_taken = f"**Inference time ({model_qwen_name}):** {elapsed_ms:.0f} ms"
    return annotated_image, output_text, time_taken


@GPU
def detect_moondream(image, prompt, category_input):
    t0 = time.perf_counter()
    if category_input in ["Object Detection", "Visual Grounding + Object Detection"]:
        output_text = model_moondream.detect(image=image, object=prompt)
    elif category_input == "Visual Grounding + Keypoint Detection":
        output_text = model_moondream.point(image=image, object=prompt)
    else:
        output_text = model_moondream.query(image=image, question=prompt, reasoning=True)
    elapsed_ms = (time.perf_counter() - t0) * 1_000

    annotated_image = create_annotated_image_normalized(image=image, json_data=output_text, label="object", explicit_color=None)

    time_taken = f"**Inference time ({model_moondream_name}):** {elapsed_ms:.0f} ms"
    return annotated_image, output_text, time_taken

def detect(image, prompt_model_1, prompt_model_2, category_input):
    STANDARD_SIZE = (1024, 1024)
    image.thumbnail(STANDARD_SIZE)
    
    annotated_image_model_1, output_text_model_1, timing_1 = detect_qwen(image, prompt_model_1)
    annotated_image_model_2, output_text_model_2, timing_2 = detect_moondream(image, prompt_model_2, category_input)

    return annotated_image_model_1, output_text_model_1, timing_1, annotated_image_model_2, output_text_model_2, timing_2

css_hide_share = """
button#gradio-share-link-button-0 {
    display: none !important;
}
"""

# --- Gradio Interface ---
with gr.Blocks(theme=Ocean(), css=css_hide_share) as demo:

    gr.Markdown("# πŸ‘“ Object Understanding with Vision Language Models")
    gr.Markdown("### Explore object detection, visual grounding, keypoint detection, and/or object counting through natural language prompts.")
    gr.Markdown("""
    *Powered by [Qwen2.5-VL 3B](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) and [Moondream 2B (revision="2025-06-21")](https://huggingface.co/vikhyatk/moondream2). Inspired by the tutorial [Object Detection and Visual Grounding with Qwen 2.5](https://pyimagesearch.com/2025/06/09/object-detection-and-visual-grounding-with-qwen-2-5/) on PyImageSearch.*  
    *Moondream 2B uses the [moondream.py API](https://huggingface.co/vikhyatk/moondream2/blob/main/moondream.py), selecting `detect` for categories with "Object Detection" `point` for the ones with "Keypoint Detection", and reasoning-based querying for all others.*
    """)

    with gr.Row():
        with gr.Column(scale=2):
            image_input = gr.Image(label="Upload an image", type="pil", height=400)
            prompt_input_model_1 = gr.Textbox(
                label=f"Enter your prompt for {model_qwen_name}",
                placeholder="e.g., Detect all red cars in the image"
            )

            prompt_input_model_2 = gr.Textbox(
                label=f"Enter your prompt for {model_moondream_name}",
                placeholder="e.g., Detect all blue cars in the image"
            )

            
            categories = [
                "Object Detection",
                "Object Counting",
                "Visual Grounding + Keypoint Detection",
                "Visual Grounding + Object Detection",
                "General query"
            ]

            category_input = gr.Dropdown(
                choices=categories,
                label="Category",
                interactive=True
            )
            generate_btn = gr.Button(value="Generate")

        with gr.Column(scale=1):
            output_image_model_1 = gr.Image(type="pil", label=f"Annotated image for {model_qwen_name}", height=400)
            output_textbox_model_1 = gr.Textbox(label=f"Model response for {model_qwen_name}", lines=10)
            output_time_model_1 = gr.Markdown()
        
        with gr.Column(scale=1):
            output_image_model_2 = gr.Image(type="pil", label=f"Annotated image for {model_moondream_name}", height=400)
            output_textbox_model_2 = gr.Textbox(label=f"Model response for {model_moondream_name}", lines=10)
            output_time_model_2 = gr.Markdown()

    gr.Markdown("### Examples")
    example_prompts = [
        ["examples/example_1.jpg", "Detect all objects in the image and return their locations and labels.", "objects", "Object Detection"],
        ["examples/example_2.JPG", "Detect all the individual candies in the image and return their locations and labels.", "candies", "Object Detection"],
        ["examples/example_1.jpg", "Count the number of red cars in the image.", "Count the number of red cars in the image.", "Object Counting"],
        ["examples/example_2.JPG", "Count the number of blue candies in the image.", "Count the number of blue candies in the image.", "Object Counting"],
        ["examples/example_1.jpg", "Identify the red cars in this image, detect their key points and return their positions in the form of points.", "red cars", "Visual Grounding + Keypoint Detection"],
        ["examples/example_2.JPG", "Identify the blue candies in this image, detect their key points and return their positions in the form of points.", "blue candies", "Visual Grounding + Keypoint Detection"],
        ["examples/example_1.jpg", "Detect the red car that is leading in this image and return its location and label.", "leading red car", "Visual Grounding + Object Detection"],
        ["examples/example_2.JPG", "Detect the blue candy located at the top of the group in this image and return its location and label.", "blue candy located at the top of the group", "Visual Grounding + Object Detection"],
    ]

    gr.Examples(
        examples=example_prompts,
        inputs=[image_input, prompt_input_model_1, prompt_input_model_2, category_input],
        label="Click an example to populate the input"
    )

    generate_btn.click(
        fn=detect,
        inputs=[image_input, prompt_input_model_1, prompt_input_model_2, category_input],
        outputs=[
            output_image_model_1, output_textbox_model_1, output_time_model_1,
            output_image_model_2, output_textbox_model_2, output_time_model_2
        ]
    )
    
if __name__ == "__main__":
    demo.launch()