Spaces:
Running
on
Zero
Running
on
Zero
import random | |
import requests | |
import json | |
import ast | |
import time | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import supervision as sv | |
from PIL import Image, ImageDraw, ImageFont | |
import gradio as gr | |
import torch | |
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, AutoModelForCausalLM | |
from qwen_vl_utils import process_vision_info | |
from spaces import GPU | |
from gradio.themes.ocean import Ocean | |
# --- Config --- | |
model_qwen_id = "Qwen/Qwen2.5-VL-3B-Instruct" | |
model_moondream_id = "vikhyatk/moondream2" | |
model_qwen = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
model_qwen_id, torch_dtype="auto", device_map="auto" | |
) | |
model_moondream = AutoModelForCausalLM.from_pretrained( | |
model_moondream_id, | |
revision="2025-06-21", | |
trust_remote_code=True, | |
device_map={"": "cuda"} | |
) | |
def extract_model_short_name(model_id): | |
return model_id.split("/")[-1].replace("-", " ").replace("_", " ") | |
model_qwen_name = extract_model_short_name(model_qwen_id) # β "Qwen2.5 VL 3B Instruct" | |
model_moondream_name = extract_model_short_name(model_moondream_id) # β "moondream2" | |
min_pixels = 224 * 224 | |
max_pixels = 1024 * 1024 | |
processor_qwen = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-3B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels) | |
def create_annotated_image(image, json_data, height, width): | |
try: | |
json_data = json_data.split("```json")[1].split("```")[0] | |
bbox_data = json.loads(json_data) | |
except Exception: | |
return image | |
original_width, original_height = image.size | |
x_scale = original_width / width | |
y_scale = original_height / height | |
boxes = [] | |
box_labels = [] | |
points = [] | |
point_labels = [] | |
for item in bbox_data: | |
label = item.get("label", "") | |
if "bbox_2d" in item: | |
bbox = item["bbox_2d"] | |
scaled_bbox = [ | |
int(bbox[0] * x_scale), | |
int(bbox[1] * y_scale), | |
int(bbox[2] * x_scale), | |
int(bbox[3] * y_scale) | |
] | |
boxes.append(scaled_bbox) | |
box_labels.append(label) | |
if "point_2d" in item: | |
x, y = item["point_2d"] | |
scaled_x = int(x * x_scale) | |
scaled_y = int(y * y_scale) | |
points.append([scaled_x, scaled_y]) | |
point_labels.append(label) | |
annotated_image = np.array(image.convert("RGB")) | |
if boxes: | |
detections = sv.Detections(xyxy=np.array(boxes)) | |
bounding_box_annotator = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX) | |
label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX) | |
annotated_image = bounding_box_annotator.annotate( | |
scene=annotated_image, | |
detections=detections | |
) | |
annotated_image = label_annotator.annotate( | |
scene=annotated_image, | |
detections=detections, | |
labels=box_labels | |
) | |
if points: | |
points_array = np.array(points).reshape(1, -1, 2) | |
key_points = sv.KeyPoints(xy=points_array) | |
vertex_annotator = sv.VertexAnnotator(radius=5, color=sv.Color.BLUE) | |
#vertex_label_annotator = sv.VertexLabelAnnotator(text_scale=0.5, border_radius=2) | |
annotated_image = vertex_annotator.annotate( | |
scene=annotated_image, | |
key_points=key_points | |
) | |
# annotated_image = vertex_label_annotator.annotate( | |
# scene=annotated_image, | |
# key_points=key_points, | |
# labels=point_labels | |
# ) | |
return Image.fromarray(annotated_image) | |
def create_annotated_image_normalized(image, json_data, label="object"): | |
if not isinstance(json_data, dict): | |
return image | |
original_width, original_height = image.size | |
annotated_image = np.array(image.convert("RGB")) | |
# Handle points for keypoint detection | |
points = [] | |
if "points" in json_data: | |
for point in json_data.get("points", []): | |
x = int(point["x"] * original_width) | |
y = int(point["y"] * original_height) | |
points.append([x, y]) | |
if "reasoning" in json_data: | |
for grounding in json_data["reasoning"].get("grounding", []): | |
for x_norm, y_norm in grounding.get("points", []): | |
x = int(x_norm * original_width) | |
y = int(y_norm * original_height) | |
points.append([x,y]) | |
if points: | |
points_array = np.array(points).reshape(1, -1, 2) | |
key_points = sv.KeyPoints(xy=points_array) | |
vertex_annotator = sv.VertexAnnotator(radius=5, color=sv.Color.RED) | |
annotated_image = vertex_annotator.annotate(scene=annotated_image, key_points=key_points) | |
# Handle boxes for object detection | |
boxes = [] | |
if "objects" in json_data: | |
for item in json_data.get("objects", []): | |
x_min = int(item["x_min"] * original_width) | |
y_min = int(item["y_min"] * original_height) | |
x_max = int(item["x_max"] * original_width) | |
y_max = int(item["y_max"] * original_height) | |
boxes.append([x_min, y_min, x_max, y_max]) | |
if boxes: | |
detections = sv.Detections(xyxy=np.array(boxes)) | |
bounding_box_annotator = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX) | |
label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX) | |
labels = [label for _ in detections.xyxy] | |
annotated_image = bounding_box_annotator.annotate( | |
scene=annotated_image, | |
detections=detections | |
) | |
annotated_image = label_annotator.annotate( | |
scene=annotated_image, | |
detections=detections, | |
labels=labels | |
) | |
return Image.fromarray(annotated_image) | |
def detect_qwen(image, prompt): | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image}, | |
{"type": "text", "text": prompt}, | |
], | |
} | |
] | |
t0 = time.perf_counter() | |
text = processor_qwen.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor_qwen( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
).to(model_qwen.device) | |
generated_ids = model_qwen.generate(**inputs, max_new_tokens=1024) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor_qwen.batch_decode( | |
generated_ids_trimmed, do_sample=True, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
)[0] | |
elapsed_ms = (time.perf_counter() - t0) * 1_000 | |
input_height = inputs['image_grid_thw'][0][1] * 14 | |
input_width = inputs['image_grid_thw'][0][2] * 14 | |
annotated_image = create_annotated_image(image, output_text, input_height, input_width) | |
time_taken = f"**Inference time ({model_qwen_name}):** {elapsed_ms:.0f} ms" | |
return annotated_image, output_text, time_taken | |
def detect_moondream(image, prompt, category_input): | |
t0 = time.perf_counter() | |
if category_input in ["Object Detection", "Visual Grounding + Object Detection"]: | |
output_text = model_moondream.detect(image=image, object=prompt) | |
elif category_input == "Visual Grounding + Keypoint Detection": | |
output_text = model_moondream.point(image=image, object=prompt) | |
else: | |
output_text = model_moondream.query(image=image, question=prompt, reasoning=True) | |
elapsed_ms = (time.perf_counter() - t0) * 1_000 | |
annotated_image = create_annotated_image_normalized(image=image, json_data=output_text, label="object") | |
time_taken = f"**Inference time ({model_moondream_name}):** {elapsed_ms:.0f} ms" | |
return annotated_image, output_text, time_taken | |
def detect(image, prompt_model_1, prompt_model_2, category_input): | |
STANDARD_SIZE = (1024, 1024) | |
image.thumbnail(STANDARD_SIZE) | |
annotated_image_model_1, output_text_model_1, timing_1 = detect_qwen(image, prompt_model_1) | |
annotated_image_model_2, output_text_model_2, timing_2 = detect_moondream(image, prompt_model_2, category_input) | |
return annotated_image_model_1, output_text_model_1, timing_1, annotated_image_model_2, output_text_model_2, timing_2 | |
css_hide_share = """ | |
button#gradio-share-link-button-0 { | |
display: none !important; | |
} | |
""" | |
# --- Gradio Interface --- | |
with gr.Blocks(theme=Ocean(), css=css_hide_share) as demo: | |
gr.Markdown("# π Object Understanding with Vision Language Models") | |
gr.Markdown("### Explore object detection, visual grounding, keypoint detection, and/or object counting through natural language prompts.") | |
gr.Markdown(""" | |
*Powered by [Qwen2.5-VL 3B](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) and [Moondream 2B (revision="2025-06-21")](https://huggingface.co/vikhyatk/moondream2). Inspired by the tutorial [Object Detection and Visual Grounding with Qwen 2.5](https://pyimagesearch.com/2025/06/09/object-detection-and-visual-grounding-with-qwen-2-5/) on PyImageSearch.* | |
*Moondream 2B uses the [moondream.py API](https://huggingface.co/vikhyatk/moondream2/blob/main/moondream.py), selecting `detect` for categories with "Object Detection" `point` for the ones with "Keypoint Detection", and reasoning-based querying for all others.* | |
""") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
image_input = gr.Image(label="Upload an image", type="pil", height=400) | |
prompt_input_model_1 = gr.Textbox( | |
label=f"Enter your prompt for {model_qwen_name}", | |
placeholder="e.g., Detect all red cars in the image" | |
) | |
prompt_input_model_2 = gr.Textbox( | |
label=f"Enter your prompt for {model_moondream_name}", | |
placeholder="e.g., Detect all blue cars in the image" | |
) | |
categories = [ | |
"Object Detection", | |
"Object Counting", | |
"Visual Grounding + Keypoint Detection", | |
"Visual Grounding + Object Detection", | |
"General query" | |
] | |
category_input = gr.Dropdown( | |
choices=categories, | |
label="Category", | |
interactive=True | |
) | |
generate_btn = gr.Button(value="Generate") | |
with gr.Column(scale=1): | |
output_image_model_1 = gr.Image(type="pil", label=f"Annotated image for {model_qwen_name}", height=400) | |
output_textbox_model_1 = gr.Textbox(label=f"Model response for {model_qwen_name}", lines=10) | |
output_time_model_1 = gr.Markdown() | |
with gr.Column(scale=1): | |
output_image_model_2 = gr.Image(type="pil", label=f"Annotated image for {model_moondream_name}", height=400) | |
output_textbox_model_2 = gr.Textbox(label=f"Model response for {model_moondream_name}", lines=10) | |
output_time_model_2 = gr.Markdown() | |
gr.Markdown("### Examples") | |
example_prompts = [ | |
["examples/example_1.jpg", "Detect all objects in the image and return their locations and labels.", "objects", "Object Detection"], | |
["examples/example_2.JPG", "Detect all the individual candies in the image and return their locations and labels.", "candies", "Object Detection"], | |
["examples/example_1.jpg", "Count the number of red cars in the image.", "Count the number of red cars in the image.", "Object Counting"], | |
["examples/example_2.JPG", "Count the number of blue candies in the image.", "Count the number of blue candies in the image.", "Object Counting"], | |
["examples/example_1.jpg", "Identify the red cars in this image, detect their key points and return their positions in the form of points.", "red cars", "Visual Grounding + Keypoint Detection"], | |
["examples/example_2.JPG", "Identify the blue candies in this image, detect their key points and return their positions in the form of points.", "blue candies", "Visual Grounding + Keypoint Detection"], | |
["examples/example_1.jpg", "Detect the red car that is leading in this image and return its location and label.", "leading red car", "Visual Grounding + Object Detection"], | |
["examples/example_2.JPG", "Detect the blue candy located at the top of the group in this image and return its location and label.", "blue candy located at the top of the group", "Visual Grounding + Object Detection"], | |
] | |
gr.Examples( | |
examples=example_prompts, | |
inputs=[image_input, prompt_input_model_1, prompt_input_model_2, category_input], | |
label="Click an example to populate the input" | |
) | |
generate_btn.click( | |
fn=detect, | |
inputs=[image_input, prompt_input_model_1, prompt_input_model_2, category_input], | |
outputs=[ | |
output_image_model_1, output_textbox_model_1, output_time_model_1, | |
output_image_model_2, output_textbox_model_2, output_time_model_2 | |
] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |