File size: 5,950 Bytes
14e11d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os.path
from abc import ABC, abstractmethod

import faiss
import numpy as np
import pandas as pd
from pgvector.sqlalchemy import Vector
from sqlalchemy import create_engine, Column, Integer, String
from sqlalchemy.orm import sessionmaker, declarative_base

from config import Config

Base = declarative_base()


class Storage(ABC):
    """Abstract Storage class."""

    # factory method
    @staticmethod
    def create_storage(cfg: Config) -> 'Storage':
        """Create a storage object."""
        if cfg.use_postgres:
            return _PostgresStorage(cfg)
        else:
            return _IndexStorage(cfg)

    @abstractmethod
    def add_all(self, embeddings: list[tuple[str, list[float]]], name: str):
        """Add multiple embeddings."""
        pass

    @abstractmethod
    def get_texts(self, embedding: list[float], name: str, limit=100) -> list[str]:
        """Get the text for the provided embedding."""
        pass

    @abstractmethod
    def get_all_embeddings(self, name: str):
        """Get all embeddings."""
        pass

    @abstractmethod
    def clear(self, name: str):
        """Clear the database."""
        pass

    @abstractmethod
    def been_indexed(self, name: str) -> bool:
        """Check if the database has been indexed."""
        pass


class _IndexStorage(Storage):
    """IndexStorage class."""

    def __init__(self, cfg: Config):
        """Initialize the storage."""
        self._cfg = cfg

    def add_all(self, embeddings: list[tuple[str, list[float]]], name):
        """Add multiple embeddings."""
        texts, index = self._load(name)
        ids = np.array([len(texts) + i for i, _ in enumerate(embeddings)])
        texts = pd.concat([texts, pd.DataFrame(
            {'index': len(texts) + i, 'text': text} for i, (text, _) in enumerate(embeddings))])
        array = np.array([emb for text, emb in embeddings])
        index.add_with_ids(array, ids)
        self._save(texts, index, name)

    def get_texts(self, embedding: list[float], name: str, limit=100) -> list[str]:
        """Get the text for the provided embedding."""
        texts, index = self._load(name)
        _, indexs = index.search(np.array([embedding]), limit)
        indexs = [i for i in indexs[0] if i >= 0]
        return [f'paragraph {p}: {t}' for _, p, t in texts.iloc[indexs].values]

    def get_all_embeddings(self, name: str):
        texts, index = self._load(name)
        texts = texts.text.tolist()
        embeddings = index.reconstruct_n(0, len(texts))
        return list(zip(texts, embeddings))

    def clear(self, name: str):
        """Clear the database."""
        self._delete(name)

    def been_indexed(self, name: str) -> bool:
        return os.path.exists(os.path.join(self._cfg.index_path, f'{name}.csv')) and os.path.exists(
            os.path.join(self._cfg.index_path, f'{name}.bin'))

    def _save(self, texts, index, name: str):
        texts.to_csv(os.path.join(self._cfg.index_path, f'{name}.csv'))
        faiss.write_index(index, os.path.join(self._cfg.index_path, f'{name}.bin'))

    def _load(self, name: str):
        if self.been_indexed(name):
            texts = pd.read_csv(os.path.join(self._cfg.index_path, f'{name}.csv'))
            index = faiss.read_index(os.path.join(self._cfg.index_path, f'{name}.bin'))
        else:
            texts = pd.DataFrame(columns=['index', 'text'])
            # IDMap2 with Flat
            index = faiss.index_factory(1536, "IDMap2,Flat", faiss.METRIC_INNER_PRODUCT)
        return texts, index

    def _delete(self, name: str):
        try:
            os.remove(os.path.join(self._cfg.index_path, f'{name}.csv'))
            os.remove(os.path.join(self._cfg.index_path, f'{name}.bin'))
        except FileNotFoundError:
            pass


def singleton(cls):
    instances = {}

    def get_instance(cfg):
        if cls not in instances:
            instances[cls] = cls(cfg)
        return instances[cls]

    return get_instance


@singleton
class _PostgresStorage(Storage):
    """PostgresStorage class."""

    def __init__(self, cfg: Config):
        """Initialize the storage."""
        self._postgresql = cfg.postgres_url
        self._engine = create_engine(self._postgresql)
        Base.metadata.create_all(self._engine)
        session = sessionmaker(bind=self._engine)
        self._session = session()

    def add_all(self, embeddings: list[tuple[str, list[float]]], name: str):
        """Add multiple embeddings."""
        data = [self.EmbeddingEntity(text=text, embedding=embedding, name=name) for text, embedding in embeddings]
        self._session.add_all(data)
        self._session.commit()

    def get_texts(self, embedding: list[float], name: str, limit=100) -> list[str]:
        """Get the text for the provided embedding."""
        result = self._session.query(self.EmbeddingEntity).where(self.EmbeddingEntity.name == name).order_by(
            self.EmbeddingEntity.embedding.cosine_distance(embedding)).limit(limit).all()
        return [f'paragraph {s.id}: {s.text}' for s in result]

    def get_all_embeddings(self, name: str):
        """Get all embeddings."""
        result = self._session.query(self.EmbeddingEntity).where(self.EmbeddingEntity.name == name).all()
        return [(s.text, s.embedding) for s in result]

    def clear(self, name: str):
        """Clear the database."""
        self._session.query(self.EmbeddingEntity).where(self.EmbeddingEntity.name == name).delete()
        self._session.commit()

    def been_indexed(self, name: str) -> bool:
        return self._session.query(self.EmbeddingEntity).filter_by(name=name).first() is not None

    def __del__(self):
        """Close the session."""
        self._session.close()

    class EmbeddingEntity(Base):
        __tablename__ = 'embedding'
        id = Column(Integer, primary_key=True)
        name = Column(String)
        text = Column(String)
        embedding = Column(Vector(1536))