File size: 26,447 Bytes
e65e67f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
import os
import logging
import json
import gradio as gr
import pandas as pd
from datasets import load_dataset
import random
from openai import OpenAI
from typing import List, Tuple
from dotenv import load_dotenv
import numpy as np

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Load environment variables
load_dotenv()

# Initialize OpenAI client
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))

# Load the dataset
dataset = load_dataset("serhany/scaling-qa")

# Define sample inputs
samples = [
    {
        "context": "Albert Einstein is an Austrian scientist, who has completed his higher education in ETH Zurich in Zurich, Switzerland. He was later a faculty at Princeton University.",
        "answer": "Switzerland"
    },
    {
        "context": "The Eiffel Tower, located in Paris, France, is one of the most famous landmarks in the world. It was constructed in 1889 as the entrance arch to the 1889 World's Fair. The tower is 324 meters (1,063 ft) tall and is the tallest structure in Paris.",
        "answer": "Paris"
    },
    {
        "context": "The Great Wall of China is a series of fortifications and walls built across the historical northern borders of ancient Chinese states and Imperial China to protect against nomadic invasions. It is the largest man-made structure in the world, with a total length of more than 13,000 miles (21,000 kilometers).",
        "answer": "China"
    }
]

def generate_basic_question(context: str, answer: str) -> str:
    try:
        response = client.chat.completions.create(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system", "content": "You are a helpful assistant that generates diverse questions based on given context and answer."},
                {"role": "user", "content": f"Based on this context: '{context}' and answer: '{answer}', generate a single question which when asked to the context returns the answer. Provide only the question, without any additional text."}
            ],
            response_format={
                "type": "json_schema",
                "json_schema": {
                    "name": "single_question_generator",
                    "strict": True,
                    "schema": {
                        "type": "object",
                        "properties": {
                            "question": {"type": "string"}
                        },
                        "required": ["question"],
                        "additionalProperties": False
                    }
                }
            }
        )
        
        json_response = response.choices[0].message.content
        logger.info(f"Raw JSON response: {json_response}")
        
        parsed_response = json.loads(json_response)
        return parsed_response["question"]
    except Exception as e:
        logger.error(f"Error in generate_single_question: {e}")
        return "Failed to generate question"


def generate_single_question(context: str, answer: str, existing_questions: List[str]) -> str:
    try:
        existing_questions_str = "\n".join(existing_questions)
        response = client.chat.completions.create(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system", "content": "You are a helpful assistant that generates diverse questions based on given context and answer."},
                {"role": "user", "content": f"Based on this context: '{context}' and answer: '{answer}', generate a single question which when asked to the context returns the answer. The question should be distinct from these existing questions:\n{existing_questions_str}\n\nProvide only the new question, without any additional text."}
            ],
            response_format={
                "type": "json_schema",
                "json_schema": {
                    "name": "single_question_generator",
                    "strict": True,
                    "schema": {
                        "type": "object",
                        "properties": {
                            "question": {"type": "string"}
                        },
                        "required": ["question"],
                        "additionalProperties": False
                    }
                }
            }
        )
        
        json_response = response.choices[0].message.content
        logger.info(f"Raw JSON response: {json_response}")
        
        parsed_response = json.loads(json_response)
        return parsed_response["question"]
    except Exception as e:
        logger.error(f"Error in generate_single_question: {e}")
        return "Failed to generate question"

############################# Experimental Code - Begin ########################################

# def is_question_distinct(new_question: str, existing_questions: List[str]) -> bool:
#     try:
#         existing_questions_str = "\n".join(existing_questions)
#         response = client.chat.completions.create(
#             model="gpt-4o-2024-08-06",
#             messages=[
#                 {"role": "system", "content": "You are an expert in linguistic analysis, specializing in question comparison."},
#                 {"role": "user", "content": f"Compare the following new question to the list of existing questions. Determine if the new question is distinct in meaning and structure from all existing questions. Respond with true if it's distinct, false if it's too similar to any existing question.\n\nNew question: {new_question}\n\nExisting questions:\n{existing_questions_str}"}
#             ],
#             response_format={
#                 "type": "json_schema",
#                 "json_schema": {
#                     "name": "distinctness_checker",
#                     "strict": True,
#                     "schema": {
#                         "type": "object",
#                         "properties": {
#                             "is_distinct": {"type": "boolean"}
#                         },
#                         "required": ["is_distinct"],
#                         "additionalProperties": False
#                     }
#                 }
#             }
#         )
        
#         json_response = response.choices[0].message.content
#         logger.info(f"Raw JSON response: {json_response}")
        
#         parsed_response = json.loads(json_response)
#         return parsed_response["is_distinct"]
#     except Exception as e:
#         logger.error(f"Error in is_question_distinct: {e}")
#         return False  # Assume not distinct in case of error

############################# Experimental Code - End ########################################

def is_question_distinct(new_question: str, existing_questions: List[str]) -> bool:
    # Convert the new question to lowercase and remove any leading/trailing whitespace
    new_question_normalized = new_question.strip().lower()
    
    # Check if the normalized new question is already in the list of existing questions
    for question in existing_questions:
        if new_question_normalized == question.strip().lower():
            return False
    
    # If we've made it through the loop, the question is distinct
    return True

def generate_questions(context: str, answer: str) -> List[str]:
    questions = []
    max_attempts = 10  # Maximum number of attempts to generate distinct questions
    
    while len(questions) < 5 and max_attempts > 0:
        new_question = generate_single_question(context, answer, questions)
        if new_question != "Failed to generate question" and is_question_distinct(new_question, questions):
            questions.append(new_question)
        else:
            max_attempts -= 1
    
    # If we couldn't generate 5 distinct questions, fill the rest with placeholder messages
    while len(questions) < 5:
        questions.append(f"Failed to generate distinct question {len(questions) + 1}")
    
    return questions

def generate_answer(context: str, question: str) -> str:
    try:
        response = client.chat.completions.create(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system", "content": "You are a helpful assistant that provides concise answers based on the given context."},
                {"role": "user", "content": f"Context: {context}\n\nQuestion: {question}\n\nProvide a concise answer to the question based on the given context."}
            ],
            response_format={
                "type": "json_schema",
                "json_schema": {
                    "name": "answer_generator",
                    "strict": True,
                    "schema": {
                        "type": "object",
                        "properties": {
                            "answer": {"type": "string"}
                        },
                        "required": ["answer"],
                        "additionalProperties": False
                    }
                }
            }
        )
        
        json_response = response.choices[0].message.content
        logger.info(f"Raw JSON response: {json_response}")
        
        parsed_response = json.loads(json_response)
        return parsed_response["answer"]
    except Exception as e:
        logger.error(f"Error in generate_answer: {e}")
        return "Failed to generate answer"

def calculate_structural_diversity(questions: List[str]) -> List[float]:
    try:
        response = client.chat.completions.create(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system", "content": "You are an expert in linguistic analysis, specializing in question structure and diversity."},
                {"role": "user", "content": f"Analyze the structural diversity of the following questions and provide a diversity score for each on a scale of 0 to 1, where 1 is highly diverse:\n\n{json.dumps(questions)}"}
            ],
            response_format={
                "type": "json_schema",
                "json_schema": {
                    "name": "structural_diversity_analyzer",
                    "strict": True,
                    "schema": {
                        "type": "object",
                        "properties": {
                            "diversity_scores": {
                                "type": "array",
                                "items": {
                                    "type": "number"
                                }
                            },
                            "explanation": {"type": "string"}
                        },
                        "required": ["diversity_scores", "explanation"],
                        "additionalProperties": False
                    }
                }
            }
        )
        
        json_response = response.choices[0].message.content
        logger.info(f"Raw JSON response: {json_response}")
        
        parsed_response = json.loads(json_response)
        diversity_scores = parsed_response["diversity_scores"]
        explanation = parsed_response["explanation"]
        
        logger.info(f"Structural Diversity Explanation: {explanation}")
        
        return diversity_scores
    except Exception as e:
        logger.error(f"Error in calculate_structural_diversity: {e}")
        return [0.5] * len(questions)  # Return neutral scores in case of error

def calculate_semantic_relevance(context: str, answer: str, questions: List[str]) -> List[float]:
    try:
        response = client.chat.completions.create(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system", "content": "You are an expert in semantic analysis, specializing in evaluating the relevance of questions to a given context and answer."},
                {"role": "user", "content": f"Analyze the semantic relevance of the following questions to the given context and answer. Provide a relevance score for each question on a scale of 0 to 1, where 1 is highly relevant:\n\nContext: {context}\nAnswer: {answer}\nQuestions: {json.dumps(questions)}"}
            ],
            response_format={
                "type": "json_schema",
                "json_schema": {
                    "name": "semantic_relevance_analyzer",
                    "strict": True,
                    "schema": {
                        "type": "object",
                        "properties": {
                            "relevance_scores": {
                                "type": "array",
                                "items": {
                                    "type": "number"
                                }
                            },
                            "explanation": {"type": "string"}
                        },
                        "required": ["relevance_scores", "explanation"],
                        "additionalProperties": False
                    }
                }
            }
        )
        
        json_response = response.choices[0].message.content
        logger.info(f"Raw JSON response: {json_response}")
        
        parsed_response = json.loads(json_response)
        relevance_scores = parsed_response["relevance_scores"]
        explanation = parsed_response["explanation"]
        
        logger.info(f"Semantic Relevance Explanation: {explanation}")
        
        return relevance_scores
    except Exception as e:
        logger.error(f"Error in calculate_semantic_relevance: {e}")
        return [0.5] * len(questions)  # Return neutral scores in case of error

# def check_answer_precision(context: str, questions: List[str], original_answer: str) -> Tuple[List[float], List[str]]:
#     precision_scores = []
#     generated_answers = []
#     for question in questions:
#         generated_answer = generate_answer(context, question)
#         generated_answers.append(generated_answer)
        
#         # Use OpenAI to evaluate answer precision
#         try:
#             response = client.chat.completions.create(
#                 model="gpt-4o-2024-08-06",
#                 messages=[
#                     {"role": "system", "content": "You are an expert in evaluating answer precision."},
#                     {"role": "user", "content": f"Compare the following two answers and provide a precision score from 0 to 1, where 1 means the answers are identical in meaning or point in the same direction. For example, Answer 1: religious plays and Answer 2: Elizabeth I forbade all religious plays in 1558.
# :\n\nOriginal Answer: {original_answer}\nGenerated Answer: {generated_answer}"}
#                 ],
#                 response_format={
#                     "type": "json_schema",
#                     "json_schema": {
#                         "name": "answer_precision_evaluator",
#                         "strict": True,
#                         "schema": {
#                             "type": "object",
#                             "properties": {
#                                 "precision_score": {
#                                     "type": "number"
#                                 }
#                             },
#                             "required": ["precision_score"],
#                             "additionalProperties": False
#                         }
#                     }
#                 }
#             )
            
#             json_response = response.choices[0].message.content
#             parsed_response = json.loads(json_response)
#             precision_score = parsed_response["precision_score"]
#             precision_scores.append(precision_score)
#         except Exception as e:
#             logger.error(f"Error in evaluating answer precision: {e}")
#             precision_scores.append(0.5)  # Neutral score in case of error
    
#     return precision_scores, generated_answers

def check_answer_precision(context: str, questions: List[str], original_answer: str) -> Tuple[List[float], List[str]]:
    precision_scores = []
    generated_answers = []
    for question in questions:
        generated_answer = generate_answer(context, question)
        generated_answers.append(generated_answer)
        
        # Use OpenAI to evaluate answer precision
        try:
            response = client.chat.completions.create(
                model="gpt-4o-2024-08-06",
                messages=[
                    {"role": "system", "content": "You are an expert in evaluating answer precision."},
                    {"role": "user", "content": f"""Given the context, the original question, and the original answer, evaluate how close the new answer is to the original answer. Provide a precision score from 0 to 1, where 1 means the answers are identical in meaning and 0 means they are completely unrelated.

Example:
Context: The end of medieval drama came about due to a number of factors, including the weakening power of the Catholic Church, the Protestant Reformation and the banning of religious plays in many countries. Elizabeth I forbid all religious plays in 1558 and the great cycle plays had been silenced by the 1580s. Similarly, religious plays were banned in the Netherlands in 1539, the Papal States in 1547 and in Paris in 1548. The abandonment of these plays destroyed the international theatre that had thereto existed and forced each country to develop its own form of drama. It also allowed dramatists to turn to secular subjects and the reviving interest in Greek and Roman theatre provided them with the perfect opportunity.
Question: What was banned that led to the demise of medieval drama?
Original Answer: religious plays
New Answer: Elizabeth I forbade all religious plays in 1558.
Precision Score: 0.6

New Answer: Religious plays were suppressed.
Precision Score: 0.75

New Answer: Religious plays
Precision Score: 1.0

Now evaluate the following:
Context: {context}
Question: {question}
Original Answer: {original_answer}
New Answer: {generated_answer}

Provide only the precision score as a number between 0 and 1."""}
                ],
                response_format={
                    "type": "json_schema",
                    "json_schema": {
                        "name": "answer_precision_evaluator",
                        "strict": True,
                        "schema": {
                            "type": "object",
                            "properties": {
                                "precision_score": {
                                    "type": "number"
                                }
                            },
                            "required": ["precision_score"],
                            "additionalProperties": False
                        }
                    }
                }
            )
            
            json_response = response.choices[0].message.content
            parsed_response = json.loads(json_response)
            precision_score = parsed_response["precision_score"]
            precision_scores.append(precision_score)
        except Exception as e:
            logger.error(f"Error in evaluating answer precision: {e}")
            precision_scores.append(0.5)  # Neutral score in case of error
    
    return precision_scores, generated_answers


def calculate_composite_scores(sd_scores: List[float], sr_scores: List[float], ap_scores: List[float]) -> List[float]:
    return [0.3 * sd + 0.3 * sr + 0.4 * ap for sd, sr, ap in zip(sd_scores, sr_scores, ap_scores)]

# def rank_questions_with_details(context: str, answer: str) -> Tuple[pd.DataFrame, List[pd.DataFrame], str]:
#     questions = generate_questions(context, answer)
    
#     sd_scores = calculate_structural_diversity(questions)
#     sr_scores = calculate_semantic_relevance(context, answer, questions)
#     ap_scores, generated_answers = check_answer_precision(context, questions, answer)
    
#     composite_scores = calculate_composite_scores(sd_scores, sr_scores, ap_scores)
    
#     # Create detailed scores dataframe
#     detailed_scores = pd.DataFrame({
#         'Question': questions,
#         'Answer Precision': ap_scores,
#         'Composite Score': composite_scores,
#         'Structural Diversity': sd_scores,
#         'Semantic Relevance': sr_scores,
#         'Generated Answer': generated_answers
#     })
#     detailed_scores = detailed_scores.sort_values('Composite Score', ascending=False).reset_index(drop=True)
    
#     # Create separate ranking dataframes for each metric
#     metrics = ['Answer Precision', 'Composite Score', 'Structural Diversity', 'Semantic Relevance']
#     rankings = []
    
#     for metric in metrics:
#         df = pd.DataFrame({
#             'Rank': range(1, 6),
#             'Question': [questions[i] for i in np.argsort(detailed_scores[metric])[::-1]],
#             f'{metric}': sorted(detailed_scores[metric], reverse=True)
#         })
#         if metric == 'Answer Precision':
#             df['Generated Answer'] = [generated_answers[i] for i in np.argsort(detailed_scores[metric])[::-1]]
#         rankings.append(df)
    
#     best_question = detailed_scores.iloc[0]['Question']
    
#     return detailed_scores, rankings, best_question

def rank_questions_with_details(context: str, answer: str) -> Tuple[pd.DataFrame, List[pd.DataFrame], str]:
    questions = generate_questions(context, answer)
    
    sd_scores = calculate_structural_diversity(questions)
    sr_scores = calculate_semantic_relevance(context, answer, questions)
    ap_scores, generated_answers = check_answer_precision(context, questions, answer)
    
    composite_scores = calculate_composite_scores(sd_scores, sr_scores, ap_scores)
    
    # Create detailed scores dataframe
    detailed_scores = pd.DataFrame({
        'Question': questions,
        'Answer Precision': ap_scores,
        'Composite Score': composite_scores,
        'Structural Diversity': sd_scores,
        'Semantic Relevance': sr_scores,
        'Generated Answer': generated_answers
    })
    detailed_scores = detailed_scores.sort_values('Composite Score', ascending=False).reset_index(drop=True)
    
    # Create separate ranking dataframes for each metric
    metrics = ['Answer Precision', 'Composite Score', 'Structural Diversity', 'Semantic Relevance']
    rankings = []
    
    for metric in metrics:
        df = pd.DataFrame({
            'Rank': range(1, 6),
            'Question': [questions[i] for i in np.argsort(detailed_scores[metric])[::-1]],
            f'{metric}': sorted(detailed_scores[metric], reverse=True)
        })
        if metric == 'Answer Precision':
            df['Generated Answer'] = [generated_answers[i] for i in np.argsort(detailed_scores[metric])[::-1]]
        rankings.append(df)
    
    best_question = detailed_scores.iloc[0]['Question']
    
    return detailed_scores, rankings, best_question

def gradio_interface(context: str, answer: str) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, str]:
    detailed_scores, rankings, best_question = rank_questions_with_details(context, answer)
    return (
        detailed_scores,
        rankings[0],  # Answer Precision Ranking
        rankings[1],  # Composite Score Ranking
        rankings[2],  # Structural Diversity Ranking
        rankings[3],  # Semantic Relevance Ranking
        f"Best Question: {best_question}"
    )

def use_sample(sample_index: int) -> Tuple[str, str]:
    return samples[sample_index]["context"], samples[sample_index]["answer"]

def get_random_entry():
    random_index = random.randint(0, len(dataset['train']) - 1)
    entry = dataset['train'][random_index]
    return entry['context'], entry['answer'], entry['question']

# Create Gradio interface
with gr.Blocks(theme=gr.themes.Default()) as iface:
    gr.Markdown("# Question Generator and Ranker")
    gr.Markdown("Enter a context and an answer to generate and rank questions, use one of the sample inputs, or get a random entry from the dataset.")
    
    with gr.Row():
        with gr.Column(scale=1):
            context_input = gr.Textbox(lines=5, label="Context")
            answer_input = gr.Textbox(lines=2, label="Answer")
            submit_button = gr.Button("Generate Questions")
            
            with gr.Row():
                sample_buttons = [gr.Button(f"Sample {i+1}") for i in range(3)]
                random_button = gr.Button("Random Dataset Entry")
        
        with gr.Column(scale=2):
            original_question_output = gr.Dataframe(label="Original Question from Dataset", visible=False)
            best_question_output = gr.Textbox(label="Best Generated Question")
            detailed_scores_output = gr.DataFrame(label="Detailed Scores")
    
    with gr.Row():
        with gr.Column():
            answer_precision_ranking_output = gr.DataFrame(label="Answer Precision Ranking")
        with gr.Column():
            composite_ranking_output = gr.DataFrame(label="Composite Score Ranking")
    
    with gr.Row():
        with gr.Column():
            structural_diversity_ranking_output = gr.DataFrame(label="Structural Diversity Ranking")
        with gr.Column():
            semantic_relevance_ranking_output = gr.DataFrame(label="Semantic Relevance Ranking")

    def process_random_entry():
        context, answer, original_question = get_random_entry()
        return (
            context, 
            answer, 
            pd.DataFrame({'Original Question': [original_question]}),
            gr.update(visible=True)
        )

    submit_button.click(
        fn=gradio_interface,
        inputs=[context_input, answer_input],
        outputs=[
            detailed_scores_output,
            answer_precision_ranking_output,
            composite_ranking_output,
            structural_diversity_ranking_output,
            semantic_relevance_ranking_output,
            best_question_output
        ]
    )

    # Set up sample button functionality
    for i, button in enumerate(sample_buttons):
        button.click(
            fn=lambda i=i: use_sample(i),
            outputs=[context_input, answer_input]
        )

    # Set up random button functionality
    random_button.click(
        fn=process_random_entry,
        outputs=[
            context_input, 
            answer_input, 
            original_question_output,
            original_question_output
        ]
    )

# Launch the app
if __name__ == "__main__":
    iface.launch()