from pathlib import Path import torch import gradio as gr from torch import nn LABELS = Path('class_names.txt').read_text().splitlines() model = nn.Sequential( nn.Conv2d(1, 32, 3, padding='same'), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(32, 64, 3, padding='same'), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(64, 128, 3, padding='same'), nn.ReLU(), nn.MaxPool2d(2), nn.Flatten(), nn.Linear(1152, 256), nn.ReLU(), nn.Linear(256, len(LABELS)), ) state_dict = torch.load('pytorch_model.bin', map_location='cpu') model.load_state_dict(state_dict, strict=False) model.eval() def predict(im): def list_shape(lst): if not isinstance(lst, list): return [] if not lst: return [0] shapes = [list_shape(sublist) for sublist in lst] max_shape = max(shapes, key=len) return [len(lst)] + [max(dimensions[i] if i < len(dimensions) else 0 for dimensions in shapes) for i in range(len(max_shape))] print(list_shape(im)) x = torch.tensor(im, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255. with torch.no_grad(): out = model(x) probabilities = torch.nn.functional.softmax(out[0], dim=0) values, indices = torch.topk(probabilities, 5) return {LABELS[i]: v.item() for i, v in zip(indices, values)} interface = gr.Interface( predict, inputs="sketchpad", outputs='label', theme="huggingface", title="Sketch Recognition", description="Who wants to play Pictionary? Draw a common object like a shovel or a laptop, and the algorithm will guess in real time!", article = "

Sketch Recognition | Demo Model

", live=True) interface.launch(debug=True)