Spaces:
Runtime error
Runtime error
seriouspark
commited on
Commit
·
4fe5bff
1
Parent(s):
ffd8c4d
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import re
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
import glob
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from torch.optim import Adam
|
12 |
+
from tqdm import tqdm
|
13 |
+
from torch import nn
|
14 |
+
from transformers import AutoTokenizer
|
15 |
+
|
16 |
+
import argparse
|
17 |
+
from bs4 import BeautifulSoup
|
18 |
+
import requests
|
19 |
+
|
20 |
+
def split_essay_to_sentence(origin_essay):
|
21 |
+
origin_essay_sentence = sum([[a.strip() for a in i.split('.')] for i in origin_essay.split('\n')], [])
|
22 |
+
essay_sent = [a for a in origin_essay_sentence if len(a) > 0]
|
23 |
+
return essay_sent
|
24 |
+
|
25 |
+
def get_first_extraction(text_sentence):
|
26 |
+
row_dict = {}
|
27 |
+
for row in tqdm(text_sentence):
|
28 |
+
question = 'what is the feeling?'
|
29 |
+
answer = question_answerer(question=question, context=row)
|
30 |
+
row_dict[row] = answer
|
31 |
+
return row_dict
|
32 |
+
|
33 |
+
|
34 |
+
class myDataset_for_infer(torch.utils.data.Dataset):
|
35 |
+
def __init__(self, X):
|
36 |
+
self.X = X
|
37 |
+
|
38 |
+
def __len__(self):
|
39 |
+
return len(self.X)
|
40 |
+
|
41 |
+
def __getitem__(self,idx):
|
42 |
+
sentences = tokenizer(self.X[idx], return_tensors = 'pt', padding = 'max_length', max_length = 96, truncation = True)
|
43 |
+
return sentences
|
44 |
+
|
45 |
+
|
46 |
+
def infer_data(model, main_feeling_keyword):
|
47 |
+
#ds = myDataset_for_infer()
|
48 |
+
df_infer = myDataset_for_infer(main_feeling_keyword)
|
49 |
+
|
50 |
+
infer_dataloader = torch.utils.data.DataLoader(df_infer, batch_size= 16)
|
51 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
52 |
+
|
53 |
+
if device == 'cuda':
|
54 |
+
model = model.cuda()
|
55 |
+
|
56 |
+
result_list = []
|
57 |
+
with torch.no_grad():
|
58 |
+
for idx, infer_input in tqdm(enumerate(infer_dataloader)):
|
59 |
+
mask = infer_input['attention_mask'].to(device)
|
60 |
+
input_id = infer_input['input_ids'].squeeze(1).to(device)
|
61 |
+
|
62 |
+
output = model(input_id, mask)
|
63 |
+
result = np.argmax(output.logits, axis=1).numpy()
|
64 |
+
result_list.extend(result)
|
65 |
+
return result_list
|
66 |
+
|
67 |
+
|
68 |
+
def get_word_emotion_pair(cls_model, origin_essay_sentence, idx2emo):
|
69 |
+
|
70 |
+
import re
|
71 |
+
def get_noun(sent):
|
72 |
+
return [w for (w, p) in pos_tag(word_tokenize(p_texts[0])) if len(w) > 1 and p in (['NN','N','NP'])]
|
73 |
+
def get_adj(sent):
|
74 |
+
return [w for (w, p) in pos_tag(word_tokenize(p_texts[0])) if len(w) > 1 and p in (['ADJ'])]
|
75 |
+
def get_verb(sent):
|
76 |
+
return [w for (w, p) in pos_tag(word_tokenize(p_texts[0])) if len(w) > 1 and p in (['VERB'])]
|
77 |
+
|
78 |
+
result_list = infer_data(cls_model, origin_essay_sentence)
|
79 |
+
final_result = pd.DataFrame(data = {'text': origin_essay_sentence , 'label' : result_list})
|
80 |
+
final_result['emotion'] = final_result['label'].map(idx2emo)
|
81 |
+
|
82 |
+
final_result['noun_list'] = final_result['text'].map(get_noun)
|
83 |
+
final_result['adj_list'] = final_result['text'].map(get_adj)
|
84 |
+
final_result['verb_list'] = final_result['text'].map(get_verb)
|
85 |
+
|
86 |
+
final_result['title'] = 'none'
|
87 |
+
file_made_dt = datetime.datetime.now()
|
88 |
+
file_made_dt_str = datetime.datetime.strftime(file_made_dt, '%Y%m%d_%H%M%d')
|
89 |
+
os.makedirs(f'./result/{nickname}/{file_made_dt_str}/', exist_ok = True)
|
90 |
+
final_result.to_csv(f"./result/{nickname}/{file_made_dt_str}/essay_result.csv", index = False)
|
91 |
+
|
92 |
+
return final_result, file_made_dt_str
|
93 |
+
|
94 |
+
return final_result, file_made_dt_str
|
95 |
+
|
96 |
+
|
97 |
+
def get_essay_base_analysis(file_made_dt_str, nickname):
|
98 |
+
essay1 = pd.read_csv(f"./result/{nickname}/{file_made_dt_str}/essay_result.csv")
|
99 |
+
essay1['noun_list_len'] = essay1['noun_list'].apply(lambda x : len(x))
|
100 |
+
essay1['noun_list_uniqlen'] = essay1['noun_list'].apply(lambda x : len(set(x)))
|
101 |
+
essay1['adj_list_len'] = essay1['adj_list'].apply(lambda x : len(x))
|
102 |
+
essay1['adj_list_uniqlen'] = essay1['adj_list'].apply(lambda x : len(set(x)))
|
103 |
+
essay1['vocab_all'] = essay1[['noun_list','adj_list']].apply(lambda x : sum((eval(x[0]),eval(x[1])), []), axis=1)
|
104 |
+
essay1['vocab_cnt'] = essay1['vocab_all'].apply(lambda x : len(x))
|
105 |
+
essay1['vocab_unique_cnt'] = essay1['vocab_all'].apply(lambda x : len(set(x)))
|
106 |
+
essay1['noun_list'] = essay1['noun_list'].apply(lambda x : eval(x))
|
107 |
+
essay1['adj_list'] = essay1['adj_list'].apply(lambda x : eval(x))
|
108 |
+
d = essay1.groupby('title')[['noun_list','adj_list']].sum([]).reset_index()
|
109 |
+
d['noun_cnt'] = d['noun_list'].apply(lambda x : len(set(x)))
|
110 |
+
d['adj_cnt'] = d['adj_list'].apply(lambda x : len(set(x)))
|
111 |
+
|
112 |
+
# 문장 기준 최고 감정
|
113 |
+
essay_summary =essay1.groupby(['title'])['emotion'].value_counts().unstack(level =1)
|
114 |
+
|
115 |
+
emo_vocab_dict = {}
|
116 |
+
for k, v in essay1[['emotion','noun_list']].values:
|
117 |
+
for vocab in v:
|
118 |
+
if (k, 'noun', vocab) not in emo_vocab_dict:
|
119 |
+
emo_vocab_dict[(k, 'noun', vocab)] = 0
|
120 |
+
|
121 |
+
emo_vocab_dict[(k, 'noun', vocab)] += 1
|
122 |
+
|
123 |
+
for k, v in essay1[['emotion','adj_list']].values:
|
124 |
+
for vocab in v:
|
125 |
+
if (k, 'adj', vocab) not in emo_vocab_dict:
|
126 |
+
emo_vocab_dict[(k, 'adj', vocab)] = 0
|
127 |
+
|
128 |
+
emo_vocab_dict[(k, 'adj', vocab)] += 1
|
129 |
+
vocab_emo_cnt_dict = {}
|
130 |
+
for k, v in essay1[['emotion','noun_list']].values:
|
131 |
+
for vocab in v:
|
132 |
+
if (vocab, 'noun') not in vocab_emo_cnt_dict:
|
133 |
+
vocab_emo_cnt_dict[('noun', vocab)] = {}
|
134 |
+
if k not in vocab_emo_cnt_dict[( 'noun', vocab)]:
|
135 |
+
vocab_emo_cnt_dict[( 'noun', vocab)][k] = 0
|
136 |
+
|
137 |
+
vocab_emo_cnt_dict[('noun', vocab)][k] += 1
|
138 |
+
|
139 |
+
for k, v in essay1[['emotion','adj_list']].values:
|
140 |
+
for vocab in v:
|
141 |
+
if ('adj', vocab) not in vocab_emo_cnt_dict:
|
142 |
+
vocab_emo_cnt_dict[( 'adj', vocab)] = {}
|
143 |
+
if k not in vocab_emo_cnt_dict[( 'adj', vocab)]:
|
144 |
+
vocab_emo_cnt_dict[( 'adj', vocab)][k] = 0
|
145 |
+
|
146 |
+
vocab_emo_cnt_dict[('adj', vocab)][k] += 1
|
147 |
+
|
148 |
+
vocab_emo_cnt_df = pd.DataFrame(vocab_emo_cnt_dict).T
|
149 |
+
vocab_emo_cnt_df['total'] = vocab_emo_cnt_df.sum(axis=1)
|
150 |
+
# 단어별 최고 감정 및 감정 개수
|
151 |
+
all_result=vocab_emo_cnt_df.sort_values(by = 'total', ascending = False)
|
152 |
+
|
153 |
+
# 단어별 최고 감정 및 감정 개수 , 형용사 포함 시
|
154 |
+
adj_result=vocab_emo_cnt_df.sort_values(by = 'total', ascending = False)
|
155 |
+
|
156 |
+
# 명사만 사용 시
|
157 |
+
noun_result=vocab_emo_cnt_df[vocab_emo_cnt_df.index.get_level_values(0) == 'noun'].sort_values(by = 'total', ascending = False)
|
158 |
+
|
159 |
+
final_file_name = f"essay_all_vocab_result.csv"
|
160 |
+
adj_file_name = f"essay_adj_vocab_result.csv"
|
161 |
+
noun_file_name = f"essay_noun_vocab_result.csv"
|
162 |
+
|
163 |
+
os.makedirs(f'./result/{nickname}/{file_made_dt_str}/', exist_ok = True)
|
164 |
+
|
165 |
+
all_result.to_csv(f"./result/{nickname}/{file_made_dt_str}/essay_all_vocab_result.csv", index = False)
|
166 |
+
adj_result.to_csv(f"./result/{nickname}/{file_made_dt_str}/essay_adj_vocab_result.csv", index = False)
|
167 |
+
noun_result.to_csv(f"./result/{nickname}/{file_made_dt_str}/essay_noun_vocab_result.csv", index = False)
|
168 |
+
|
169 |
+
return all_result, adj_result, noun_result, essay_summary, file_made_dt_str
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
from transformers import AutoModelForSequenceClassification
|
174 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
175 |
+
|
176 |
+
def all_process(origin_essay, nickname):
|
177 |
+
essay_sent =split_essay_to_sentence(origin_essay)
|
178 |
+
idx2emo = {0: 'Anger', 1: 'Sadness', 2: 'Anxiety', 3: 'Hurt', 4: 'Embarrassment', 5: 'Joy'}
|
179 |
+
tokenizer = AutoTokenizer.from_pretrained('seriouspark/xlm-roberta-base-finetuning-sentimental-6label')
|
180 |
+
cls_model = AutoModelForSequenceClassification.from_pretrained('seriouspark/xlm-roberta-base-finetuning-sentimental-6label')
|
181 |
+
|
182 |
+
final_result, file_name_dt = get_word_emotion_pair(cls_model, essay_sent, idx2emo)
|
183 |
+
all_result, adj_result, noun_result, essay_summary, file_made_dt_str = get_essay_base_analysis(file_name_dt, nickname)
|
184 |
+
|
185 |
+
summary_result = pd.concat([adj_result, noun_result]).fillna(0).sort_values(by = 'total', ascending = False).fillna(0).reset_index()[:30]
|
186 |
+
with open(f'./result/{nickname}/{file_name_dt}/summary.json','w') as f:
|
187 |
+
json.dump( essay_summary.to_json(),f)
|
188 |
+
with open(f'./result/{nickname}/{file_made_dt_str}/all_result.json','w') as f:
|
189 |
+
json.dump( all_result.to_json(),f)
|
190 |
+
with open(f'./result/{nickname}/{file_made_dt_str}/adj_result.json','w') as f:
|
191 |
+
json.dump( adj_result.to_json(),f)
|
192 |
+
with open(f'./result/{nickname}/{file_made_dt_str}/noun_result.json','w') as f:
|
193 |
+
json.dump( noun_result.to_json(),f)
|
194 |
+
#return essay_summary, summary_result
|
195 |
+
total_cnt = essay_summary.sum(axis=1).values[0]
|
196 |
+
essay_summary_list = sorted(essay_summary.T.to_dict()['none'].items(), key = lambda x: x[1], reverse =True)
|
197 |
+
essay_summary_list_str = ' '.join([f'{row[0]} {int(row[1]*100 / total_cnt)}%' for row in essay_summary_list])
|
198 |
+
summary1 = f"""{nickname}, Your sentiments in your writting are [{essay_summary_list_str}] """
|
199 |
+
|
200 |
+
return summary1
|
201 |
+
|
202 |
+
def get_similar_vocab(message):
|
203 |
+
if (len(message) > 0) & (len(re.findall('[A-Za-z]+', message))> 0):
|
204 |
+
vocab = message
|
205 |
+
all_dict_url = f"https://www.dictionary.com/browse/{vocab}"
|
206 |
+
response = requests.get(all_dict_url)
|
207 |
+
|
208 |
+
html_content = response.text
|
209 |
+
# BeautifulSoup로 HTML 파싱
|
210 |
+
soup = BeautifulSoup(html_content, 'html.parser')
|
211 |
+
result = soup.find_all(class_='ESah86zaufmd2_YPdZtq')
|
212 |
+
p_texts = [p.get_text() for p in soup.find_all('p')]
|
213 |
+
whole_vocab = sum([ [word for word , pos in pos_tag(word_tokenize(text)) if pos in ['NN','JJ','NNP','NNS']] for text in p_texts],[])
|
214 |
+
|
215 |
+
similar_words_final = Counter(whole_vocab).most_common(10)
|
216 |
+
return [i[0] for i in similar_words_final]
|
217 |
+
|
218 |
+
else:
|
219 |
+
return message
|
220 |
+
|
221 |
+
def get_similar_means(vocab):
|
222 |
+
all_dict_url = f"https://www.dictionary.com/browse/{vocab}"
|
223 |
+
response = requests.get(all_dict_url)
|
224 |
+
html_content = response.text
|
225 |
+
soup = BeautifulSoup(html_content, 'html.parser')
|
226 |
+
result = soup.find_all(class_='ESah86zaufmd2_YPdZtq')
|
227 |
+
p_texts = [p.get_text() for p in soup.find_all('p')]
|
228 |
+
return p_texts[:10]
|
229 |
+
|
230 |
+
|
231 |
+
info_dict = {}
|
232 |
+
def run_all(message, history):
|
233 |
+
global info_dict
|
234 |
+
if message.find('NICKNAME:')>=0:
|
235 |
+
global nickname
|
236 |
+
nickname = message.replace('NICKNAME','').replace(':','').strip()
|
237 |
+
#global nickname
|
238 |
+
info_dict[nickname] = {}
|
239 |
+
return f'''Good [{nickname}]!! Let's start!.
|
240 |
+
Give me a vocabulary in your mind.
|
241 |
+
\n\n\nwhen you type the vocab, please include \"VOCAB: \"
|
242 |
+
e.g <VOCAB: orange>
|
243 |
+
'''
|
244 |
+
try :
|
245 |
+
#print(nickname)
|
246 |
+
if message.find('VOCAB:')>=0:
|
247 |
+
clear_message = message.replace('VOCAB','').replace(':','').strip()
|
248 |
+
info_dict[nickname]['main_word'] = clear_message
|
249 |
+
vocab_mean_list = []
|
250 |
+
similar_words_final = get_similar_vocab(clear_message)
|
251 |
+
print(similar_words_final)
|
252 |
+
similar_words_final_with_main = similar_words_final + [clear_message]
|
253 |
+
if len(similar_words_final_with_main)>0:
|
254 |
+
for w in similar_words_final_with_main:
|
255 |
+
temp_means = get_similar_means(w)
|
256 |
+
vocab_mean_list.append(temp_means[:2])
|
257 |
+
fixed_similar_words_final = list(set([i for i in sum(vocab_mean_list, []) if len(i) > 10]))[:10]
|
258 |
+
|
259 |
+
|
260 |
+
word_str = ' \n'.join([str(idx) + ") " + i for idx, i in enumerate(similar_words_final, 1)])
|
261 |
+
sentence_str = ' \n'.join([str(idx) + ") " + i for idx, i in enumerate(fixed_similar_words_final, 1)])
|
262 |
+
|
263 |
+
return f'''Let's start writing with the VOCAB<{clear_message}>!
|
264 |
+
First, how about those similar words?
|
265 |
+
{word_str} \n
|
266 |
+
The word has these meanings.
|
267 |
+
{sentence_str}\n
|
268 |
+
Pick and type one meaning of these list.
|
269 |
+
\n\n\n When you type in, please include \"SENT:\", like this.
|
270 |
+
\n e.g. <SENT: a globose, reddish-yellow, bitter or sweet, edible citrus fruit. >
|
271 |
+
'''
|
272 |
+
else:
|
273 |
+
return 'Include \"VOCAB:\" please (VOCAB: orange)'
|
274 |
+
|
275 |
+
elif message.find('SENT:')>=0:
|
276 |
+
clear_message = message.replace('SENT','').replace(':','').strip()
|
277 |
+
info_dict[nickname]['selected_sentence'] = clear_message
|
278 |
+
return f'''You've got [{clear_message}].
|
279 |
+
\n With this sentence, we can make creative short writings
|
280 |
+
\n\n\n Include \"SHORT_W: \", please.
|
281 |
+
\n e.g <SHORT_W: Whenever I smell the citrus, I always reminise him, first>
|
282 |
+
|
283 |
+
'''
|
284 |
+
|
285 |
+
elif message.find('SHORT_W:')>=0:
|
286 |
+
clear_message = message.replace('SHORT_W','').replace(':','').strip()
|
287 |
+
info_dict[nickname]['short_contents'] = clear_message
|
288 |
+
|
289 |
+
return f'''This is your short sentence <{clear_message}> .
|
290 |
+
\n With this sentence, let's step one more thing, please write long sentences more than 500 words.
|
291 |
+
\n\n\n When you input, please include\"LONG_W: \" like this.
|
292 |
+
\n e.g <LONG_W: He enjoyed wearing blue T-shirts at the gym, but the intense citrus scent he used on his clothes was noticeably excessive ... >
|
293 |
+
'''
|
294 |
+
elif message.find('LONG_W:')>=0:
|
295 |
+
long_message = message.replace('LONG_W','').replace(':','').strip()
|
296 |
+
|
297 |
+
length_of_lm = len(long_message)
|
298 |
+
if length_of_lm >= 500:
|
299 |
+
info_dict['long_contents'] = long_message
|
300 |
+
os.makedirs(f"./result/{nickname}/", exist_ok = True)
|
301 |
+
with open(f"./result/{nickname}/contents.txt",'w') as f:
|
302 |
+
f.write(long_message)
|
303 |
+
return f'Your entered text is {length_of_lm} characters. This text is worth analyzing. If you wish to start the analysis, please type "START ANALYSIS"'
|
304 |
+
else :
|
305 |
+
return f'The text you have entered is {length_of_lm} characters. It\'s a bit short for analysis. Could you please provide a bit more sentences'
|
306 |
+
|
307 |
+
elif message.find('START ANALYSIS')>=0:
|
308 |
+
with open(f"./result/{nickname}/contents.txt",'r') as f:
|
309 |
+
orign_essay = f.read()
|
310 |
+
summary = all_process(orign_essay, nickname)
|
311 |
+
|
312 |
+
#print(summary)
|
313 |
+
return summary
|
314 |
+
else:
|
315 |
+
return 'Please start from the beginning'
|
316 |
+
|
317 |
+
except:
|
318 |
+
return 'An error has occurred. Restarting from the beginning. Please enter your NICKNAME:'
|
319 |
+
|
320 |
+
|
321 |
+
import gradio as gr
|
322 |
+
import requests
|
323 |
+
history = []
|
324 |
+
info_dict = {}
|
325 |
+
iface = gr.ChatInterface(
|
326 |
+
fn=run_all,
|
327 |
+
chatbot = gr.Chatbot(),
|
328 |
+
textbox = gr.Textbox(placeholder="Please enter including the chatbot's request prefix.", container = True, scale = 7),
|
329 |
+
title = 'MooGeulMooGeul',
|
330 |
+
description = "Please start by choosing your nickname. Include 'NICKNAME: ' in your response",
|
331 |
+
theme = 'soft',
|
332 |
+
examples = ['NICKNAME: bluebottle',
|
333 |
+
'VOCAB: orange',
|
334 |
+
'SENT: a globose, reddish-yellow, bitter or sweet, edible citrus fruit.',
|
335 |
+
'SHORT_W: Whenever I smell the citrus, I always reminise him, first',
|
336 |
+
'''LONG_W: Whenever I smell citrus, I always think of him. He used to come to the gym wearing a blue T-shirt, often spraying a strong citrus scent.
|
337 |
+
That scent was quite distinctive, letting me know when he was passing by.
|
338 |
+
I usually arrived to work out between 7:00 and 7:30 AM, and interestingly, he would arrive about 10 minutes after me.
|
339 |
+
On days I came early, he did too; and when I was late, he was also late.
|
340 |
+
The citrus scent from his body was always so intense, as if he had just sprayed it.'''
|
341 |
+
],
|
342 |
+
cache_examples = False,
|
343 |
+
retry_btn = None,
|
344 |
+
undo_btn = 'Delete Previous',
|
345 |
+
clear_btn = 'Clear',
|
346 |
+
|
347 |
+
)
|
348 |
+
iface.launch(share=True)
|