File size: 4,672 Bytes
4d6e8c2
 
 
 
 
 
 
 
 
2812524
2e75c99
2812524
 
4d6e8c2
 
70f5f26
1c33274
70f5f26
1c33274
70f5f26
4d6e8c2
 
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70f5f26
 
 
 
 
4d6e8c2
 
 
70f5f26
2e75c99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2812524
2e75c99
 
 
 
 
 
 
 
 
 
 
3836483
70f5f26
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
70f5f26
4d6e8c2
 
 
 
1c33274
4d6e8c2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

#additional imports 
from transformers import Trainer, TrainingArguments, DistilBertForSequenceClassification, DistilBertTokenizerFast
import logging

router = APIRouter()

DESCRIPTION = "Random Baseline"
ROUTE = "/text"

@router.post(ROUTE, tags=["Text Task"], 
             description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
    """
    Evaluate text classification for climate disinformation detection.
    
    Current Model: Random Baseline
    - Makes random predictions from the label space (0-7)
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name)

    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})

    # Split dataset
    train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
    test_dataset = train_test["test"]
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------   
    
    # Make random predictions (placeholder for actual model inference)
    true_labels = test_dataset["label"]

    tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased")
    # Tokenize the datasets
    def tokenize_function(examples):
        return tokenizer(examples["quote"], padding="max_length", truncation=True)

    train_dataset = dataset["train"].map(tokenize_function, batched=True)
    test_dataset = dataset["test"].map(tokenize_function, batched=True)

    model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=8)  # Set num_labels for your classification task

    training_args = TrainingArguments(
    output_dir="./results",            
    eval_strategy="epoch",       # Evaluation strategy (can be "steps" or "epoch")
    per_device_train_batch_size=16,    # Batch size for training
    per_device_eval_batch_size=64,     # Batch size for evaluation
    num_train_epochs=3,                # Number of training epochs
    logging_dir="./logs",              # Directory for logs
    logging_steps=10,                  # How often to log
    )
    
    trainer = Trainer(
    model=model,                       # The model to train
    args=training_args,                # The training arguments
    train_dataset=train_dataset,       # The training dataset
    eval_dataset=test_dataset          # The evaluation dataset
    )
    
    
    trainer.train()
    predictions = trainer.evaluate()


    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   

    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results