import torch class M5(torch.nn.Module): def __init__(self, num_classes=2): # Ensure it matches dataset labels (chainsaw/environment) super(M5, self).__init__() self.conv1 = torch.nn.Conv1d(in_channels=1, out_channels=32, kernel_size=80, stride=4) self.bn1 = torch.nn.BatchNorm1d(32) self.conv2 = torch.nn.Conv1d(in_channels=32, out_channels=64, kernel_size=3) self.bn2 = torch.nn.BatchNorm1d(64) self.conv3 = torch.nn.Conv1d(in_channels=64, out_channels=128, kernel_size=3) self.bn3 = torch.nn.BatchNorm1d(128) self.conv4 = torch.nn.Conv1d(in_channels=128, out_channels=256, kernel_size=3) self.bn4 = torch.nn.BatchNorm1d(256) self.fc1 = torch.nn.Linear(256, num_classes) def forward(self, x): x = torch.nn.functional.relu(self.bn1(self.conv1(x))) x = torch.nn.functional.max_pool1d(x, 4) x = torch.nn.functional.relu(self.bn2(self.conv2(x))) x = torch.nn.functional.max_pool1d(x, 4) x = torch.nn.functional.relu(self.bn3(self.conv3(x))) x = torch.nn.functional.max_pool1d(x, 4) x = torch.nn.functional.relu(self.bn4(self.conv4(x))) x = torch.nn.functional.max_pool1d(x, 4) x = torch.mean(x, dim=2) x = self.fc1(x) return x def load_model(model_path, num_classes=2): """ Load trained M5 model. """ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = M5(num_classes=num_classes).to(device) model.load_state_dict(torch.load(model_path, map_location=device)) model.eval() # Set model to evaluation mode return model, device if __name__ == "__main__": model, device = load_model("quantized_teacher_m5_static.pth") print("✅ Model successfully loaded!")