from fastapi import APIRouter from datetime import datetime from datasets import load_dataset from sklearn.metrics import accuracy_score import random from .utils.evaluation import TextEvaluationRequest from .utils.emissions import tracker, clean_emissions_data, get_space_info #additional imports from transformers import Trainer, TrainingArguments, DistilBertForSequenceClassification, DistilBertTokenizerFast import logging router = APIRouter() DESCRIPTION = "Random Baseline" ROUTE = "/text" @router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION) async def evaluate_text(request: TextEvaluationRequest): """ Evaluate text classification for climate disinformation detection. Current Model: Random Baseline - Makes random predictions from the label space (0-7) - Used as a baseline for comparison """ # Get space info username, space_url = get_space_info() # Define the label mapping LABEL_MAPPING = { "0_not_relevant": 0, "1_not_happening": 1, "2_not_human": 2, "3_not_bad": 3, "4_solutions_harmful_unnecessary": 4, "5_science_unreliable": 5, "6_proponents_biased": 6, "7_fossil_fuels_needed": 7 } # Load and prepare the dataset dataset = load_dataset(request.dataset_name) # Convert string labels to integers dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) # Split dataset train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) test_dataset = train_test["test"] # Start tracking emissions tracker.start() tracker.start_task("inference") #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE CODE HERE # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. #-------------------------------------------------------------------------------------------- # Make random predictions (placeholder for actual model inference) true_labels = test_dataset["label"] tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased") # Tokenize the datasets def tokenize_function(examples): return tokenizer(examples["quote"], padding="max_length", truncation=True) train_dataset = dataset["train"].map(tokenize_function, batched=True) test_dataset = dataset["test"].map(tokenize_function, batched=True) model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=8) # Set num_labels for your classification task training_args = TrainingArguments( output_dir="./results", eval_strategy="epoch", # Evaluation strategy (can be "steps" or "epoch") per_device_train_batch_size=16, # Batch size for training per_device_eval_batch_size=64, # Batch size for evaluation num_train_epochs=3, # Number of training epochs logging_dir="./logs", # Directory for logs logging_steps=10, # How often to log ) trainer = Trainer( model=model, # The model to train args=training_args, # The training arguments train_dataset=train_dataset, # The training dataset eval_dataset=test_dataset # The evaluation dataset ) trainer.train() predictions = trainer.evaluate() #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE STOPS HERE #-------------------------------------------------------------------------------------------- # Stop tracking emissions emissions_data = tracker.stop_task() # Calculate accuracy accuracy = accuracy_score(true_labels, predictions) # Prepare results dictionary results = { "username": username, "space_url": space_url, "submission_timestamp": datetime.now().isoformat(), "model_description": DESCRIPTION, "accuracy": float(accuracy), "energy_consumed_wh": emissions_data.energy_consumed * 1000, "emissions_gco2eq": emissions_data.emissions * 1000, "emissions_data": clean_emissions_data(emissions_data), "api_route": ROUTE, "dataset_config": { "dataset_name": request.dataset_name, "test_size": request.test_size, "test_seed": request.test_seed } } return results