File size: 6,848 Bytes
96dc011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d794e1d
 
 
 
96dc011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
from dataclasses import dataclass
from typing import List, Tuple

import torch
import torchaudio
from huggingface_hub import hf_hub_download
from models import Model, ModelArgs
from moshi.models import loaders
from tokenizers.processors import TemplateProcessing
from transformers import AutoTokenizer
from watermarking import load_watermarker, watermark

CSM_1B_HF_WATERMARK = list(map(int, os.getenv("WATERMARK_KEY").split(" ")))


@dataclass
class Segment:
    speaker: int
    text: str
    # (num_samples,), sample_rate = 24_000
    audio: torch.Tensor


def load_llama3_tokenizer():
    """
    https://github.com/huggingface/transformers/issues/22794#issuecomment-2092623992
    """
    tokenizer_name = "meta-llama/Llama-3.2-1B"
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
    bos = tokenizer.bos_token
    eos = tokenizer.eos_token
    tokenizer._tokenizer.post_processor = TemplateProcessing(
        single=f"{bos}:0 $A:0 {eos}:0",
        pair=f"{bos}:0 $A:0 {eos}:0 {bos}:1 $B:1 {eos}:1",
        special_tokens=[(f"{bos}", tokenizer.bos_token_id), (f"{eos}", tokenizer.eos_token_id)],
    )

    return tokenizer


class Generator:
    def __init__(
        self,
        model: Model,
    ):
        self._model = model
        self._model.setup_caches(1)

        self._text_tokenizer = load_llama3_tokenizer()

        device = next(model.parameters()).device
        mimi_weight = hf_hub_download(loaders.DEFAULT_REPO, loaders.MIMI_NAME)
        mimi = loaders.get_mimi(mimi_weight, device=device)
        mimi.set_num_codebooks(32)
        self._audio_tokenizer = mimi

        self._watermarker = load_watermarker(device=device)

        self.sample_rate = mimi.sample_rate
        self.device = device

    def _tokenize_text_segment(self, text: str, speaker: int) -> Tuple[torch.Tensor, torch.Tensor]:
        frame_tokens = []
        frame_masks = []

        text_tokens = self._text_tokenizer.encode(f"[{speaker}]{text}")
        text_frame = torch.zeros(len(text_tokens), 33).long()
        text_frame_mask = torch.zeros(len(text_tokens), 33).bool()
        text_frame[:, -1] = torch.tensor(text_tokens)
        text_frame_mask[:, -1] = True

        frame_tokens.append(text_frame.to(self.device))
        frame_masks.append(text_frame_mask.to(self.device))

        return torch.cat(frame_tokens, dim=0), torch.cat(frame_masks, dim=0)

    def _tokenize_audio(self, audio: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        frame_tokens = []
        frame_masks = []

        # (K, T)
        audio = audio.to(self.device)
        audio_tokens = self._audio_tokenizer.encode(audio.unsqueeze(0).unsqueeze(0))[0]
        # add EOS frame
        eos_frame = torch.zeros(audio_tokens.size(0), 1).to(self.device)
        audio_tokens = torch.cat([audio_tokens, eos_frame], dim=1)

        audio_frame = torch.zeros(audio_tokens.size(1), 33).long().to(self.device)
        audio_frame_mask = torch.zeros(audio_tokens.size(1), 33).bool().to(self.device)
        audio_frame[:, :-1] = audio_tokens.transpose(0, 1)
        audio_frame_mask[:, :-1] = True

        frame_tokens.append(audio_frame)
        frame_masks.append(audio_frame_mask)

        return torch.cat(frame_tokens, dim=0), torch.cat(frame_masks, dim=0)

    def _tokenize_segment(self, segment: Segment) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Returns:
            (seq_len, 33), (seq_len, 33)
        """
        text_tokens, text_masks = self._tokenize_text_segment(segment.text, segment.speaker)
        audio_tokens, audio_masks = self._tokenize_audio(segment.audio)

        return torch.cat([text_tokens, audio_tokens], dim=0), torch.cat([text_masks, audio_masks], dim=0)

    @torch.inference_mode()
    def generate(
        self,
        text: str,
        speaker: int,
        context: List[Segment],
        max_audio_length_ms: float = 90_000,
        temperature: float = 0.9,
        topk: int = 50,
    ) -> torch.Tensor:
        self._model.reset_caches()

        max_audio_frames = int(max_audio_length_ms / 80)
        tokens, tokens_mask = [], []
        for segment in context:
            segment_tokens, segment_tokens_mask = self._tokenize_segment(segment)
            tokens.append(segment_tokens)
            tokens_mask.append(segment_tokens_mask)

        gen_segment_tokens, gen_segment_tokens_mask = self._tokenize_text_segment(text, speaker)
        tokens.append(gen_segment_tokens)
        tokens_mask.append(gen_segment_tokens_mask)

        prompt_tokens = torch.cat(tokens, dim=0).long().to(self.device)
        prompt_tokens_mask = torch.cat(tokens_mask, dim=0).bool().to(self.device)

        samples = []
        curr_tokens = prompt_tokens.unsqueeze(0)
        curr_tokens_mask = prompt_tokens_mask.unsqueeze(0)
        curr_pos = torch.arange(0, prompt_tokens.size(0)).unsqueeze(0).long().to(self.device)

        max_seq_len = 2048 - max_audio_frames
        if curr_tokens.size(1) >= max_seq_len:
            raise ValueError(f"Inputs too long, must be below max_seq_len - max_audio_frames: {max_seq_len}")

        for _ in range(max_audio_frames):
            sample = self._model.generate_frame(curr_tokens, curr_tokens_mask, curr_pos, temperature, topk)
            if torch.all(sample == 0):
                break  # eos

            samples.append(sample)

            curr_tokens = torch.cat([sample, torch.zeros(1, 1).long().to(self.device)], dim=1).unsqueeze(1)
            curr_tokens_mask = torch.cat(
                [torch.ones_like(sample).bool(), torch.zeros(1, 1).bool().to(self.device)], dim=1
            ).unsqueeze(1)
            curr_pos = curr_pos[:, -1:] + 1

        audio = self._audio_tokenizer.decode(torch.stack(samples).permute(1, 2, 0)).squeeze(0).squeeze(0)

        # This applies an imperceptible watermark to identify audio as AI-generated.
        # Watermarking ensures transparency, dissuades misuse, and enables traceability.
        # Please be a responsible AI citizen and keep the watermarking in place.
        # If using CSM 1B in another application, use your own private key and keep it secret.
        audio, wm_sample_rate = watermark(self._watermarker, audio, self.sample_rate, CSM_1B_HF_WATERMARK)
        audio = torchaudio.functional.resample(audio, orig_freq=wm_sample_rate, new_freq=self.sample_rate)

        return audio


def load_csm_1b(ckpt_path: str = "ckpt.pt", device: str = "cuda") -> Generator:
    model_args = ModelArgs(
        backbone_flavor="llama-1B",
        decoder_flavor="llama-100M",
        text_vocab_size=128256,
        audio_vocab_size=2051,
        audio_num_codebooks=32,
    )
    model = Model(model_args).to(device=device, dtype=torch.bfloat16)
    state_dict = torch.load(ckpt_path)
    model.load_state_dict(state_dict)

    generator = Generator(model)
    return generator