Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,848 Bytes
96dc011 d794e1d 96dc011 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import os
from dataclasses import dataclass
from typing import List, Tuple
import torch
import torchaudio
from huggingface_hub import hf_hub_download
from models import Model, ModelArgs
from moshi.models import loaders
from tokenizers.processors import TemplateProcessing
from transformers import AutoTokenizer
from watermarking import load_watermarker, watermark
CSM_1B_HF_WATERMARK = list(map(int, os.getenv("WATERMARK_KEY").split(" ")))
@dataclass
class Segment:
speaker: int
text: str
# (num_samples,), sample_rate = 24_000
audio: torch.Tensor
def load_llama3_tokenizer():
"""
https://github.com/huggingface/transformers/issues/22794#issuecomment-2092623992
"""
tokenizer_name = "meta-llama/Llama-3.2-1B"
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
bos = tokenizer.bos_token
eos = tokenizer.eos_token
tokenizer._tokenizer.post_processor = TemplateProcessing(
single=f"{bos}:0 $A:0 {eos}:0",
pair=f"{bos}:0 $A:0 {eos}:0 {bos}:1 $B:1 {eos}:1",
special_tokens=[(f"{bos}", tokenizer.bos_token_id), (f"{eos}", tokenizer.eos_token_id)],
)
return tokenizer
class Generator:
def __init__(
self,
model: Model,
):
self._model = model
self._model.setup_caches(1)
self._text_tokenizer = load_llama3_tokenizer()
device = next(model.parameters()).device
mimi_weight = hf_hub_download(loaders.DEFAULT_REPO, loaders.MIMI_NAME)
mimi = loaders.get_mimi(mimi_weight, device=device)
mimi.set_num_codebooks(32)
self._audio_tokenizer = mimi
self._watermarker = load_watermarker(device=device)
self.sample_rate = mimi.sample_rate
self.device = device
def _tokenize_text_segment(self, text: str, speaker: int) -> Tuple[torch.Tensor, torch.Tensor]:
frame_tokens = []
frame_masks = []
text_tokens = self._text_tokenizer.encode(f"[{speaker}]{text}")
text_frame = torch.zeros(len(text_tokens), 33).long()
text_frame_mask = torch.zeros(len(text_tokens), 33).bool()
text_frame[:, -1] = torch.tensor(text_tokens)
text_frame_mask[:, -1] = True
frame_tokens.append(text_frame.to(self.device))
frame_masks.append(text_frame_mask.to(self.device))
return torch.cat(frame_tokens, dim=0), torch.cat(frame_masks, dim=0)
def _tokenize_audio(self, audio: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
frame_tokens = []
frame_masks = []
# (K, T)
audio = audio.to(self.device)
audio_tokens = self._audio_tokenizer.encode(audio.unsqueeze(0).unsqueeze(0))[0]
# add EOS frame
eos_frame = torch.zeros(audio_tokens.size(0), 1).to(self.device)
audio_tokens = torch.cat([audio_tokens, eos_frame], dim=1)
audio_frame = torch.zeros(audio_tokens.size(1), 33).long().to(self.device)
audio_frame_mask = torch.zeros(audio_tokens.size(1), 33).bool().to(self.device)
audio_frame[:, :-1] = audio_tokens.transpose(0, 1)
audio_frame_mask[:, :-1] = True
frame_tokens.append(audio_frame)
frame_masks.append(audio_frame_mask)
return torch.cat(frame_tokens, dim=0), torch.cat(frame_masks, dim=0)
def _tokenize_segment(self, segment: Segment) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Returns:
(seq_len, 33), (seq_len, 33)
"""
text_tokens, text_masks = self._tokenize_text_segment(segment.text, segment.speaker)
audio_tokens, audio_masks = self._tokenize_audio(segment.audio)
return torch.cat([text_tokens, audio_tokens], dim=0), torch.cat([text_masks, audio_masks], dim=0)
@torch.inference_mode()
def generate(
self,
text: str,
speaker: int,
context: List[Segment],
max_audio_length_ms: float = 90_000,
temperature: float = 0.9,
topk: int = 50,
) -> torch.Tensor:
self._model.reset_caches()
max_audio_frames = int(max_audio_length_ms / 80)
tokens, tokens_mask = [], []
for segment in context:
segment_tokens, segment_tokens_mask = self._tokenize_segment(segment)
tokens.append(segment_tokens)
tokens_mask.append(segment_tokens_mask)
gen_segment_tokens, gen_segment_tokens_mask = self._tokenize_text_segment(text, speaker)
tokens.append(gen_segment_tokens)
tokens_mask.append(gen_segment_tokens_mask)
prompt_tokens = torch.cat(tokens, dim=0).long().to(self.device)
prompt_tokens_mask = torch.cat(tokens_mask, dim=0).bool().to(self.device)
samples = []
curr_tokens = prompt_tokens.unsqueeze(0)
curr_tokens_mask = prompt_tokens_mask.unsqueeze(0)
curr_pos = torch.arange(0, prompt_tokens.size(0)).unsqueeze(0).long().to(self.device)
max_seq_len = 2048 - max_audio_frames
if curr_tokens.size(1) >= max_seq_len:
raise ValueError(f"Inputs too long, must be below max_seq_len - max_audio_frames: {max_seq_len}")
for _ in range(max_audio_frames):
sample = self._model.generate_frame(curr_tokens, curr_tokens_mask, curr_pos, temperature, topk)
if torch.all(sample == 0):
break # eos
samples.append(sample)
curr_tokens = torch.cat([sample, torch.zeros(1, 1).long().to(self.device)], dim=1).unsqueeze(1)
curr_tokens_mask = torch.cat(
[torch.ones_like(sample).bool(), torch.zeros(1, 1).bool().to(self.device)], dim=1
).unsqueeze(1)
curr_pos = curr_pos[:, -1:] + 1
audio = self._audio_tokenizer.decode(torch.stack(samples).permute(1, 2, 0)).squeeze(0).squeeze(0)
# This applies an imperceptible watermark to identify audio as AI-generated.
# Watermarking ensures transparency, dissuades misuse, and enables traceability.
# Please be a responsible AI citizen and keep the watermarking in place.
# If using CSM 1B in another application, use your own private key and keep it secret.
audio, wm_sample_rate = watermark(self._watermarker, audio, self.sample_rate, CSM_1B_HF_WATERMARK)
audio = torchaudio.functional.resample(audio, orig_freq=wm_sample_rate, new_freq=self.sample_rate)
return audio
def load_csm_1b(ckpt_path: str = "ckpt.pt", device: str = "cuda") -> Generator:
model_args = ModelArgs(
backbone_flavor="llama-1B",
decoder_flavor="llama-100M",
text_vocab_size=128256,
audio_vocab_size=2051,
audio_num_codebooks=32,
)
model = Model(model_args).to(device=device, dtype=torch.bfloat16)
state_dict = torch.load(ckpt_path)
model.load_state_dict(state_dict)
generator = Generator(model)
return generator
|