File size: 3,821 Bytes
1c6e9dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
705a5a7
 
 
1c6e9dd
 
 
 
 
 
 
 
 
 
 
 
 
a987a32
 
 
1c6e9dd
 
 
 
 
da3b250
1c6e9dd
 
 
37b14ba
1c6e9dd
 
1057483
 
37b14ba
1c6e9dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057483
37b14ba
 
1c6e9dd
 
 
 
0ab4567
1c6e9dd
 
 
 
37b14ba
d44ab90
1c6e9dd
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
import gradio as gr
from PIL import Image
import torch
import matplotlib.pyplot as plt
import torch
import numpy as np

processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")


def process_image(image, prompt):
    inputs = processor(
        text=prompt, images=image, padding="max_length", return_tensors="pt"
    )

    # predict
    with torch.no_grad():
        outputs = model(**inputs)
        preds = outputs.logits

    pred = torch.sigmoid(preds)
    mat = pred.cpu().numpy()
    mask = Image.fromarray(np.uint8(mat * 255), "L")
    mask = mask.convert("RGB")
    mask = mask.resize(image.size)
    mask = np.array(mask)[:, :, 0]

    # normalize the mask
    mask_min = mask.min()
    mask_max = mask.max()
    mask = (mask - mask_min) / (mask_max - mask_min)
    return mask


def get_masks(prompts, img, threhsold):
    prompts = prompts.split(",")
    masks = []
    for prompt in prompts:
        mask = process_image(img, prompt)
        mask = mask > threhsold
        masks.append(mask)
    return masks


def extract_image(img, pos_prompts, neg_prompts, threshold):
    positive_masks = get_masks(pos_prompts, img, threshold)
    negative_masks = get_masks(neg_prompts, img, threshold)

    # combine masks into one masks, logic OR
    pos_mask = np.any(np.stack(positive_masks), axis=0)
    neg_mask = np.any(np.stack(negative_masks), axis=0)
    final_mask = pos_mask & ~neg_mask
    inverse_mask = ~pos_mask & neg_mask

    # extract the final image
    final_mask = Image.fromarray(final_mask.astype(np.uint8) * 255, "L")
    inverse_mask = Image.fromarray(pos_mask.astype(np.uint8) * 255, "L")
    output_image = Image.new("RGBA", img.size, (0, 0, 0, 0))
    output_image.paste(img, mask=final_mask)

    orig_image = img
    return output_image, final_mask, orig_image, inverse_mask


title = "Interactive demo: zero-shot image segmentation with CLIPSeg"
description = "Demo for using CLIPSeg, a CLIP-based model for zero- and one-shot image segmentation. To use it, simply upload an image and add a text to mask (identify in the image), or use one of the examples below and click 'submit'. Results will show up in a few seconds."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10003'>CLIPSeg: Image Segmentation Using Text and Image Prompts</a> | <a href='https://huggingface.co/docs/transformers/main/en/model_doc/clipseg'>HuggingFace docs</a></p>"


with gr.Blocks() as demo:
    gr.Markdown("# CLIPSeg: Image Segmentation Using Text and Image Prompts")
    gr.Markdown(article)
    gr.Markdown(description)

    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil")
            positive_prompts = gr.Textbox(
                label="Please describe what you want to identify (comma separated)"
            )
            negative_prompts = gr.Textbox(
                label="Please describe what you want to ignore (comma separated)"
            )

            input_slider_T = gr.Slider(
                minimum=0, maximum=1, value=0.4, label="Threshold"
            )
            btn_process = gr.Button(label="Process")

        with gr.Column():
            output_image = gr.Image(label="Result")
            output_mask = gr.Image(label="Mask")
            orig_image = gr.Image(label="Orig")
            inverse_mask = gr.Image(label="Inverse")


    btn_process.click(
        extract_image,
        inputs=[
            input_image,
            positive_prompts,
            negative_prompts,
            input_slider_T,
        ],
        outputs=[output_image, output_mask, orig_image, inverse_mask],
        api_name="mask"
    )


demo.launch()