File size: 5,029 Bytes
a2b29a7
 
11e68b1
4ec5914
11e68b1
8064c8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e68b1
8064c8d
e723e47
 
 
 
8064c8d
e723e47
 
 
 
8064c8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e68b1
8064c8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e68b1
4152c07
 
 
8064c8d
 
4152c07
 
 
8064c8d
4152c07
 
 
 
 
 
8064c8d
 
4152c07
 
 
8064c8d
 
4152c07
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from pathlib import Path

import gradio as gr
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer

lang_to_code = {
    "Akrikaans": "af",
    "Albanian": "sq",
    "Amharic": "am",
    "Arabic": "ar",
    "Armenian": "hy",
    "Assamese": "as",
    "Asturian": "ast",
    "Aymara": "ay",
    "Azerbaijani": "az",
    "Bashkir": "ba",
    "Belarusian": "be",
    "Bengali": "bn",
    "Bosnian": "bs",
    "Breton": "br",
    "Bulgarian": "bg",
    "Burmese": "my",
    "Catalan": "ca",
    "Cebuano": "ceb",
    "Central Khmer": "km",
    "Chinese": "zh",
    "Chokwe": "cjk",
    "Croatian": "hr",
    "Czech": "cs",
    "Danish": "da",
    "Dutch": "nl",
    "Dyula": "dyu",
    "English": "en",
    "Estonian": "et",
    "Finnish": "fi",
    "French": "fr",
    "Fulah": "ff",
    "Galician": "gl",
    "Ganda": "lg",
    "Georgian": "ka",
    "German": "de",
    "Greek": "el",
    "Gujarati": "gu",
    "Haitian Creole": "ht",
    "Hausa": "ha",
    "Hebrew": "he",
    "Hindi": "hi",
    "Hungarian": "hu",
    "Icelandic": "is",
    "Igbo": "ig",
    "Iloko": "ilo",
    "Indonesian": "id",
    "Irish": "ga",
    "Italian": "it",
    "Japanese": "ja",
    "Javanese": "jv",
    "Kabuverdianu": "kea",
    "Kachin": "kac",
    "Kamba": "kam",
    "Kannada": "kn",
    "Kazakh": "kk",
    "Kimbundu": "kmb",
    "Kongo": "kg",
    "Korean": "ko",
    "Kurdish": "ku",
    "Kyrgyz": "ky",
    "Lao": "lo",
    "Latvian": "lv",
    "Lingala": "ln",
    "Lithuanian": "lt",
    "Luo": "luo",
    "Luxembourgish": "lb",
    "Macedonian": "mk",
    "Malagasy": "mg",
    "Malay": "ms",
    "Malayalam": "ml",
    "Maltese": "mt",
    "Maori": "mi",
    "Marathi": "mr",
    "Mongolian": "mn",
    "Nepali": "ne",
    "Northern Kurdish": "kmr",
    "Northern Sotho": "ns",
    "Norwegian": "no",
    "Nyanja": "ny",
    "Occitan": "oc",
    "Oriya": "or",
    "Oromo": "om",
    "Pashto": "ps",
    "Persian": "fa",
    "Polish": "pl",
    "Portuguese": "pt",
    "Punjabi": "pa",
    "Quechua": "qu",
    "Romanian": "ro",
    "Russian": "ru",
    "Scottish Gaelic": "gd",
    "Serbian": "sr",
    "Shan": "shn",
    "Shona": "sn",
    "Sindhi": "sd",
    "Sinhala": "si",
    "Slovak": "sk",
    "Slovenian": "sl",
    "Somali": "so",
    "Spanish": "es",
    "Sundanese": "su",
    "Swahili": "sw",
    "Swati": "ss",
    "Swedish": "sv",
    "Tagalog": "tl",
    "Tajik": "tg",
    "Tamil": "ta",
    "Telugu": "te",
    "Thai": "th",
    "Tigrinya": "ti",
    "Tswana": "tn",
    "Turkish": "tr",
    "Ukrainian": "uk",
    "Umbundu": "umb",
    "Urdu": "ur",
    "Uzbek": "uz",
    "Vietnamese": "vi",
    "Welsh": "cy",
    "Western Frisian": "fy",
    "Wolof": "wo",
    "Xhosa": "xh",
    "Yiddish": "yi",
    "Yoruba": "yo",
    "Zulu": "zu",
}
lang_names = list(lang_to_code.keys())

# load model
model_path = Path("./model_files").resolve()
print(f"model_path: {model_path}")
tokenizer: M2M100Tokenizer = M2M100Tokenizer.from_pretrained(
    pretrained_model_name_or_path=str(model_path), local_files_only=True
)
model = M2M100ForConditionalGeneration.from_pretrained(
    pretrained_model_name_or_path=str(model_path), local_files_only=True
)


# fix tokenizer
tokenizer.lang_token_to_id = {
    t: i
    for t, i in zip(tokenizer.all_special_tokens, tokenizer.all_special_ids)
    if i > 5
}
tokenizer.lang_code_to_token = {s.strip("_"): s for s in tokenizer.lang_token_to_id}
tokenizer.lang_code_to_id = {
    s.strip("_"): i for s, i in tokenizer.lang_token_to_id.items()
}
tokenizer.id_to_lang_token = {i: s for s, i in tokenizer.lang_token_to_id.items()}


def translate(src_text: str, source_lang: str, target_lang: str) -> str:
    # get lang code
    src_lang = lang_to_code[source_lang]
    tgt_lang = lang_to_code[target_lang]

    # encode
    tokenizer.src_lang = src_lang
    encoded_input = tokenizer(src_text, return_tensors="pt")

    # inference
    generated_tokens = model.generate(
        **encoded_input,
        forced_bos_token_id=tokenizer.get_lang_id(tgt_lang),
        max_length=1024,
    )

    # decode
    pred_texts = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
    pred_text = pred_texts[0]
    assert isinstance(pred_text, str)

    return pred_text


inputs = [
    gr.Textbox(lines=4, value="Hello world!", label="Input Text"),
    gr.Dropdown(lang_names, value="English", label="Source Language"),
    gr.Dropdown(lang_names, value="Korean", label="Target Language"),
]


outputs = gr.Textbox(lines=4, label="Output Text")


demo = gr.Interface(
    fn=translate,
    inputs=inputs,
    outputs=outputs,
    title="Flores101: Large-Scale Multilingual Machine Translation",
    description="[`seyoungsong/flores101_mm100_175M`](https://huggingface.co/seyoungsong/flores101_mm100_175M)",
)

if __name__ == "__main__":
    # https://huggingface.co/seyoungsong/flores101_mm100_175M
    # https://huggingface.co/spaces/seyoungsong/flores101_mm100_175M
    # gradio src/pretrained/gradio/app.py
    # http://127.0.0.1:7860
    demo.launch()