File size: 7,160 Bytes
259d504
 
 
 
53afe5a
4bf5dae
3ea5660
 
 
259d504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bf5dae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53afe5a
3ea5660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc1dca9
259d504
 
 
 
 
 
 
 
 
 
 
 
 
5bfb146
259d504
 
 
 
 
 
4bf5dae
3ea5660
4bf5dae
3ea5660
259d504
1310d0e
259d504
86f16e5
259d504
 
e62a54b
05a348e
5ee2847
86f16e5
259d504
 
 
 
 
 
 
37dfdda
259d504
 
 
 
 
 
 
 
 
37dfdda
259d504
 
 
 
 
37dfdda
259d504
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import gradio as gr
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
from PIL import Image
import torch
import spaces
import json
import re
from langdetect import detect, LangDetectException
from googletrans import Translator

# Load the processor and model
processor = AutoProcessor.from_pretrained(
    'allenai/Molmo-7B-D-0924',
    trust_remote_code=True,
    torch_dtype='auto',
    device_map='auto'
)

model = AutoModelForCausalLM.from_pretrained(
    'allenai/Molmo-7B-D-0924',
    trust_remote_code=True,
    torch_dtype='auto',
    device_map='auto'
)

import json

def wrap_json_in_markdown(text):
    result = []
    stack = []
    json_start = None
    in_json = False
    i = 0
    while i < len(text):
        char = text[i]
        if char in ['{', '[']:
            if not in_json:
                json_start = i
                in_json = True
                stack.append(char)
            else:
                stack.append(char)
        elif char in ['}', ']'] and in_json:
            if not stack:
                # Unbalanced bracket, reset
                in_json = False
                json_start = None
            else:
                last = stack.pop()
                if (last == '{' and char != '}') or (last == '[' and char != ']'):
                    # Mismatched brackets
                    in_json = False
                    json_start = None
        if in_json and not stack:
            # Potential end of JSON
            json_str = text[json_start:i+1]
            try:
                # Try to parse the JSON to ensure it's valid
                parsed = json.loads(json_str)
                # Wrap in Markdown code block
                wrapped = f"\n```json\n{json.dumps(parsed, indent=4)}\n```\n"
                result.append(text[:json_start])  # Append text before JSON
                result.append(wrapped)           # Append wrapped JSON
                text = text[i+1:]                # Update the remaining text
                i = -1                           # Reset index
            except json.JSONDecodeError:
                # Not valid JSON, continue searching
                pass
            in_json = False
            json_start = None
        i += 1
    result.append(text)  # Append any remaining text
    return ''.join(result)

def decode_unicode_sequences(unicode_seq):
    """
    Decodes a sequence of Unicode escape sequences (e.g., \\u4F60\\u597D) to actual characters.

    Args:
        unicode_seq (str): A string containing Unicode escape sequences.

    Returns:
        str: The decoded Unicode string.
    """
    # Regular expression to find \uXXXX
    unicode_escape_pattern = re.compile(r'\\u([0-9a-fA-F]{4})')
    
    # Function to replace each \uXXXX with the corresponding character
    def replace_match(match):
        hex_value = match.group(1)
        return chr(int(hex_value, 16))
    
    # Decode all \uXXXX sequences
    decoded = unicode_escape_pattern.sub(replace_match, unicode_seq)
    return decoded

def is_mandarin(text):
    """
    Detects if the given text is in Mandarin.

    Args:
        text (str): The text to check.

    Returns:
        bool: True if the text is detected as Mandarin, False otherwise.
    """
    try:
        lang = detect(text)
        return lang == 'zh-cn' or lang == 'zh-tw' or lang == 'zh'
    except LangDetectException:
        return False

def translate_to_english(text, translator):
    """
    Translates the given Mandarin text to English.

    Args:
        text (str): The Mandarin text to translate.
        translator (Translator): An instance of googletrans Translator.

    Returns:
        str: The translated English text.
    """
    try:
        translation = translator.translate(text, src='zh-cn', dest='en')
        return translation.text
    except Exception as e:
        print(f"Translation error: {e}")
        return text  # Return the original text if translation fails

def process_text_for_mandarin_unicode(input_string):
    """
    Processes the input string to find Unicode escape sequences representing Mandarin words,
    translates them to English, and replaces them accordingly.

    Args:
        input_string (str): The original string containing Unicode escape sequences.

    Returns:
        str: The processed string with translations where applicable.
    """
    # Initialize the translator
    translator = Translator()
    
    # Regular expression to find groups of consecutive \uXXXX sequences
    unicode_word_pattern = re.compile(r'(?:\\u[0-9a-fA-F]{4})+')
    
    # Function to process each matched Unicode word
    def process_match(match):
        unicode_seq = match.group(0)
        decoded_word = decode_unicode_sequences(unicode_seq)
        
        if is_mandarin(decoded_word):
            translated = translate_to_english(decoded_word, translator)
            return f"{translated} ({decoded_word})"
        else:
            # If not Mandarin, return the original sequence
            return unicode_seq
    
    # Substitute all matched Unicode words with their translations if applicable
    processed_string = unicode_word_pattern.sub(process_match, input_string)
    return processed_string

@spaces.GPU()
def process_image_and_text(image, text):
    # Process the image and text
    inputs = processor.process(
        images=[Image.fromarray(image)],
        text=text
    )

    # Move inputs to the correct device and make a batch of size 1
    inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}

    # Generate output
    output = model.generate_from_batch(
        inputs,
        GenerationConfig(max_new_tokens=1024, stop_strings="<|endoftext|>"),
        tokenizer=processor.tokenizer
    )

    # Only get generated tokens; decode them to text
    generated_tokens = output[0, inputs['input_ids'].size(1):]
    generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
    generated_text_w_json_wrapper = wrap_json_in_markdown(generated_text)
    generated_text_w_unicode_mdn = process_text_for_mandarin_unicode(generated_text_w_json_wrapper)
    
    return generated_text_w_unicode_mdn

def chatbot(image, text, history):
    if image is None:
        return history + [("Please upload an image first.", None)]

    response = process_image_and_text(image, text)

    history.append({"role": "user", "content": text})
    history.append({"role": "assistant", "content": response})
    return history

# Define the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Image Chatbot with Molmo-7B-D-0924")
    
    with gr.Row():
        image_input = gr.Image(type="numpy")
        chatbot_output = gr.Chatbot(type="messages")
    
    text_input = gr.Textbox(placeholder="Ask a question about the image...")
    submit_button = gr.Button("Submit")

    state = gr.State([])

    submit_button.click(
        chatbot,
        inputs=[image_input, text_input, state],
        outputs=[chatbot_output]
    )

    text_input.submit(
        chatbot,
        inputs=[image_input, text_input, state],
        outputs=[chatbot_output]
    )

demo.launch()