Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig | |
from PIL import Image | |
import torch | |
import spaces | |
import json | |
# Load the processor and model | |
processor = AutoProcessor.from_pretrained( | |
'allenai/Molmo-7B-D-0924', | |
trust_remote_code=True, | |
torch_dtype='auto', | |
device_map='auto' | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
'allenai/Molmo-7B-D-0924', | |
trust_remote_code=True, | |
torch_dtype='auto', | |
device_map='auto' | |
) | |
import json | |
def wrap_json_in_markdown(text): | |
result = [] | |
stack = [] | |
json_start = None | |
in_json = False | |
i = 0 | |
while i < len(text): | |
char = text[i] | |
if char in ['{', '[']: | |
if not in_json: | |
json_start = i | |
in_json = True | |
stack.append(char) | |
else: | |
stack.append(char) | |
elif char in ['}', ']'] and in_json: | |
if not stack: | |
# Unbalanced bracket, reset | |
in_json = False | |
json_start = None | |
else: | |
last = stack.pop() | |
if (last == '{' and char != '}') or (last == '[' and char != ']'): | |
# Mismatched brackets | |
in_json = False | |
json_start = None | |
if in_json and not stack: | |
# Potential end of JSON | |
json_str = text[json_start:i+1] | |
try: | |
# Try to parse the JSON to ensure it's valid | |
parsed = json.loads(json_str) | |
# Wrap in Markdown code block | |
wrapped = f"\n```json\n{json.dumps(parsed, indent=4)}\n```\n" | |
result.append(text[:json_start]) # Append text before JSON | |
result.append(wrapped) # Append wrapped JSON | |
text = text[i+1:] # Update the remaining text | |
i = -1 # Reset index | |
except json.JSONDecodeError: | |
# Not valid JSON, continue searching | |
pass | |
in_json = False | |
json_start = None | |
i += 1 | |
result.append(text) # Append any remaining text | |
return ''.join(result) | |
def process_image_and_text(image, text): | |
# Process the image and text | |
inputs = processor.process( | |
images=[Image.fromarray(image)], | |
text=text | |
) | |
# Move inputs to the correct device and make a batch of size 1 | |
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()} | |
# Generate output | |
output = model.generate_from_batch( | |
inputs, | |
GenerationConfig(max_new_tokens=1024, stop_strings="<|endoftext|>"), | |
tokenizer=processor.tokenizer | |
) | |
# Only get generated tokens; decode them to text | |
generated_tokens = output[0, inputs['input_ids'].size(1):] | |
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True) | |
generated_text_w_json_wrapper = wrap_json_in_markdown(generated_text) | |
return generated_text_w_json_wrapper | |
def chatbot(image, text, history): | |
if image is None: | |
return history + [("Please upload an image first.", None)] | |
response = process_image_and_text(image, text) | |
history.append({"role": "user", "content": text}) | |
history.append({"role": "assistant", "content": response}) | |
return history | |
# Define the Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Image Chatbot with Molmo-7B-D-0924") | |
with gr.Row(): | |
image_input = gr.Image(type="numpy") | |
chatbot_output = gr.Chatbot(type="messages") | |
text_input = gr.Textbox(placeholder="Ask a question about the image...") | |
submit_button = gr.Button("Submit") | |
state = gr.State([]) | |
submit_button.click( | |
chatbot, | |
inputs=[image_input, text_input, state], | |
outputs=[chatbot_output] | |
) | |
text_input.submit( | |
chatbot, | |
inputs=[image_input, text_input, state], | |
outputs=[chatbot_output] | |
) | |
demo.launch() |