Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import os
|
4 |
+
import spaces
|
5 |
+
|
6 |
+
# Define some pre-populated vision models.
|
7 |
+
PREDEFINED_MODELS = {
|
8 |
+
"ViT Base (google/vit-base-patch16-224)": "google/vit-base-patch16-224",
|
9 |
+
"DeiT Base (facebook/deit-base-distilled-patch16-224)": "facebook/deit-base-distilled-patch16-224",
|
10 |
+
"CLIP ViT Base (openai/clip-vit-base-patch32)": "openai/clip-vit-base-patch32"
|
11 |
+
}
|
12 |
+
|
13 |
+
@spaces.GPU
|
14 |
+
def compare_vision_models(image, model1_choice, model1_custom, model2_choice, model2_custom):
|
15 |
+
"""
|
16 |
+
For each model selection, use the pre-defined model identifier unless the user selects "Custom" and enters an identifier.
|
17 |
+
Then create an image-classification pipeline for each model and run inference on the provided image.
|
18 |
+
"""
|
19 |
+
# Determine the model names to use:
|
20 |
+
model1_name = (
|
21 |
+
PREDEFINED_MODELS.get(model1_choice, model1_custom)
|
22 |
+
if model1_choice != "Custom" else model1_custom
|
23 |
+
)
|
24 |
+
model2_name = (
|
25 |
+
PREDEFINED_MODELS.get(model2_choice, model2_custom)
|
26 |
+
if model2_choice != "Custom" else model2_custom
|
27 |
+
)
|
28 |
+
|
29 |
+
# Optionally, if you deploy on a GPU-enabled space (e.g. using ZeroGPU), you can set device=0.
|
30 |
+
# Here, we check an environment variable "USE_GPU" (set it to "1" in your Space's settings if needed).
|
31 |
+
device = 0 if os.environ.get("USE_GPU", "0") == "1" else -1
|
32 |
+
|
33 |
+
# Create pipelines. In this example we assume the models support image classification.
|
34 |
+
classifier1 = pipeline("image-classification", model=model1_name, device=device)
|
35 |
+
classifier2 = pipeline("image-classification", model=model2_name, device=device)
|
36 |
+
|
37 |
+
# Run inference
|
38 |
+
preds1 = classifier1(image)
|
39 |
+
preds2 = classifier2(image)
|
40 |
+
|
41 |
+
# Format the predictions as text (each line shows the predicted label and its confidence score)
|
42 |
+
result1 = "\n".join([f"{pred['label']}: {pred['score']:.3f}" for pred in preds1])
|
43 |
+
result2 = "\n".join([f"{pred['label']}: {pred['score']:.3f}" for pred in preds2])
|
44 |
+
|
45 |
+
return result1, result2
|
46 |
+
|
47 |
+
# Build the Gradio interface using Blocks.
|
48 |
+
with gr.Blocks(title="Vision Model Comparison Tool") as demo:
|
49 |
+
gr.Markdown("## Vision Model Comparison Tool\nSelect two Hugging Face vision models to compare their outputs side-by-side!")
|
50 |
+
with gr.Row():
|
51 |
+
with gr.Column():
|
52 |
+
gr.Markdown("### Model 1")
|
53 |
+
model1_choice = gr.Dropdown(
|
54 |
+
choices=list(PREDEFINED_MODELS.keys()) + ["Custom"],
|
55 |
+
label="Select a pre-defined model or 'Custom'"
|
56 |
+
)
|
57 |
+
model1_custom = gr.Textbox(
|
58 |
+
label="Custom Hugging Face Model",
|
59 |
+
placeholder="e.g., username/model_name"
|
60 |
+
)
|
61 |
+
with gr.Column():
|
62 |
+
gr.Markdown("### Model 2")
|
63 |
+
model2_choice = gr.Dropdown(
|
64 |
+
choices=list(PREDEFINED_MODELS.keys()) + ["Custom"],
|
65 |
+
label="Select a pre-defined model or 'Custom'"
|
66 |
+
)
|
67 |
+
model2_custom = gr.Textbox(
|
68 |
+
label="Custom Hugging Face Model",
|
69 |
+
placeholder="e.g., username/model_name"
|
70 |
+
)
|
71 |
+
image_input = gr.Image(label="Input Image", type="pil")
|
72 |
+
compare_btn = gr.Button("Compare Models")
|
73 |
+
with gr.Row():
|
74 |
+
output1 = gr.Textbox(label="Model 1 Output")
|
75 |
+
output2 = gr.Textbox(label="Model 2 Output")
|
76 |
+
|
77 |
+
compare_btn.click(
|
78 |
+
fn=compare_vision_models,
|
79 |
+
inputs=[image_input, model1_choice, model1_custom, model2_choice, model2_custom],
|
80 |
+
outputs=[output1, output2]
|
81 |
+
)
|
82 |
+
|
83 |
+
demo.launch()
|