import gradio as gr from transformers import pipeline import os import spaces # Define some pre-populated vision models. PREDEFINED_MODELS = { "ViT Base (google/vit-base-patch16-224)": "google/vit-base-patch16-224", "DeiT Base (facebook/deit-base-distilled-patch16-224)": "facebook/deit-base-distilled-patch16-224", "CLIP ViT Base (openai/clip-vit-base-patch32)": "openai/clip-vit-base-patch32" } @spaces.GPU def compare_vision_models(image, model1_choice, model1_custom, model2_choice, model2_custom): """ For each model selection, use the pre-defined model identifier unless the user selects "Custom" and enters an identifier. Then create an image-classification pipeline for each model and run inference on the provided image. """ # Determine the model names to use: model1_name = ( PREDEFINED_MODELS.get(model1_choice, model1_custom) if model1_choice != "Custom" else model1_custom ) model2_name = ( PREDEFINED_MODELS.get(model2_choice, model2_custom) if model2_choice != "Custom" else model2_custom ) # Optionally, if you deploy on a GPU-enabled space (e.g. using ZeroGPU), you can set device=0. # Here, we check an environment variable "USE_GPU" (set it to "1" in your Space's settings if needed). device = 0 if os.environ.get("USE_GPU", "0") == "1" else -1 # Create pipelines. In this example we assume the models support image classification. classifier1 = pipeline("image-classification", model=model1_name, device=device) classifier2 = pipeline("image-classification", model=model2_name, device=device) # Run inference preds1 = classifier1(image) preds2 = classifier2(image) # Format the predictions as text (each line shows the predicted label and its confidence score) result1 = "\n".join([f"{pred['label']}: {pred['score']:.3f}" for pred in preds1]) result2 = "\n".join([f"{pred['label']}: {pred['score']:.3f}" for pred in preds2]) return result1, result2 # Build the Gradio interface using Blocks. with gr.Blocks(title="Vision Model Comparison Tool") as demo: gr.Markdown("## Vision Model Comparison Tool\nSelect two Hugging Face vision models to compare their outputs side-by-side!") with gr.Row(): with gr.Column(): gr.Markdown("### Model 1") model1_choice = gr.Dropdown( choices=list(PREDEFINED_MODELS.keys()) + ["Custom"], label="Select a pre-defined model or 'Custom'" ) model1_custom = gr.Textbox( label="Custom Hugging Face Model", placeholder="e.g., username/model_name" ) with gr.Column(): gr.Markdown("### Model 2") model2_choice = gr.Dropdown( choices=list(PREDEFINED_MODELS.keys()) + ["Custom"], label="Select a pre-defined model or 'Custom'" ) model2_custom = gr.Textbox( label="Custom Hugging Face Model", placeholder="e.g., username/model_name" ) image_input = gr.Image(label="Input Image", type="pil") compare_btn = gr.Button("Compare Models") with gr.Row(): output1 = gr.Textbox(label="Model 1 Output") output2 = gr.Textbox(label="Model 2 Output") compare_btn.click( fn=compare_vision_models, inputs=[image_input, model1_choice, model1_custom, model2_choice, model2_custom], outputs=[output1, output2] ) demo.launch()