sguertl's picture
Add ERD type
91a5497 verified
raw
history blame
13.1 kB
import os
import streamlit as st
from openai import OpenAI
import base64
import json
import requests
import re
import pandas as pd
from huggingface_hub import InferenceClient
HF_MODEL_MISTRAL = "mistralai/Mistral-7B-Instruct-v0.3"
HF_MODEL_LLAMA = "meta-llama/Llama-3.3-70B-Instruct"
UML_PROMPTS_DOC_URL = os.environ['UML_PROMPTS_DOC_URL']
ERD_PROMPTS_DOC_URL = os.environ['ERD_PROMPTS_DOC_URL']
STEP1_SYSTEM_PROMPT = "STEP1 SYSPROMPT"
STEP1_USER_PROMPT = "STEP1 USERPROMPT"
STEP2_SYSTEM_PROMPT = "STEP2 SYSPROMPT"
STEP2_USER_PROMPT = "STEP2 USERPROMPT"
STEP3A_SYSTEM_PROMPT = "STEP3A SYSPROMPT"
STEP3A_USER_PROMPT = "STEP3A USERPROMPT"
STEP3B_SYSTEM_PROMPT = "STEP3B SYSPROMPT"
STEP3B_USER_PROMPT = "STEP3B USERPROMPT"
def fetch_prompts_from_google_doc(diagram_type="UML"):
if diagram_type == "UML":
response = requests.get(UML_PROMPTS_DOC_URL)
elif diagram_type == "ERD":
response = requests.get(ERD_PROMPTS_DOC_URL)
if response.status_code != 200:
raise Exception("Failed to fetch document")
text = response.text
prompts = {}
pattern = r"\{BEGIN (.*?)\}([\s\S]*?)\{END \1\}"
matches = re.findall(pattern, text)
for key, content in matches:
prompts[key.strip()] = content.strip()
return prompts
# Step 1: Extract PlantUML Code
def extract_plantuml_code(client_openai, uploaded_file, model_choice, prompts):
st.write("Model: ", model_choice)
encoded_image = base64.b64encode(uploaded_file.getvalue()).decode("utf-8")
response = client_openai.chat.completions.create(
model=model_choice,
messages=[
{
"role": "system",
"content": prompts[STEP1_SYSTEM_PROMPT],
},
{
"role": "user",
"content": [
{"type": "text", "text": prompts[STEP1_USER_PROMPT]},
{
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{encoded_image}"},
},
],
},
],
temperature=0.2,
top_p=0.1,
max_tokens=4096,
)
return response.choices[0].message.content
# Step 2: Compare PlantUML Code
def compare_plantuml(client_openai, client_hf_mistral, client_hf_llama, plantuml_instructor, plantuml_student, model_choice, prompts, diagram_type="UML"):
st.write("Model: ", model_choice)
user_prompt=f"""
{prompts[STEP2_USER_PROMPT]}
**Instructor's {diagram_type} Diagram:**
{plantuml_instructor}
**Student's {diagram_type} Diagram:**
{plantuml_student}
"""
if model_choice in [HF_MODEL_MISTRAL]:
response = client_hf_mistral.chat_completion(
[
{
"role": "system",
"content": prompts[STEP2_SYSTEM_PROMPT],
},
{"role": "user", "content": user_prompt},
],
max_tokens=1024,
temperature=0.2,
)
return response["choices"][0]["message"]["content"]
elif model_choice in [HF_MODEL_LLAMA]:
response = client_hf_llama.chat_completion(
[
{
"role": "system",
"content": prompts[STEP2_SYSTEM_PROMPT],
},
{"role": "user", "content": user_prompt},
],
max_tokens=1024,
temperature=0.2,
)
return response["choices"][0]["message"]["content"]
else:
response = client_openai.chat.completions.create(
model=model_choice,
messages=[
{
"role": "system",
"content": prompts[STEP2_SYSTEM_PROMPT],
},
{
"role": "user",
"content": user_prompt,
},
],
temperature=0.2,
top_p=0.1,
max_tokens=4096,
)
return response.choices[0].message.content
# Step 3A: Generate Student Feedback
def generate_student_feedback(client_openai, client_hf_mistral, client_hf_llama, differences, model_choice, prompts):
st.write("Model (Student Feedback):", model_choice)
user_prompt=f"""
{prompts[STEP3A_USER_PROMPT]}
{json.dumps(differences, indent=2)}
"""
if model_choice in [HF_MODEL_MISTRAL]:
response = client_hf_mistral.chat_completion(
[
{
"role": "system",
"content": prompts[STEP3A_SYSTEM_PROMPT],
},
{"role": "user", "content": user_prompt},
],
max_tokens=1024,
temperature=0.2,
)
return response["choices"][0]["message"]["content"]
elif model_choice in [HF_MODEL_LLAMA]:
response = client_hf_llama.chat_completion(
[
{
"role": "system",
"content": prompts[STEP3A_SYSTEM_PROMPT],
},
{"role": "user", "content": user_prompt},
],
max_tokens=1024,
temperature=0.2,
)
return response["choices"][0]["message"]["content"]
else:
response = client_openai.chat.completions.create(
model=model_choice,
messages=[
{
"role": "system",
"content": prompts[STEP3A_SYSTEM_PROMPT],
},
{
"role": "user",
"content": user_prompt,
},
],
temperature=0.2,
top_p=0.1,
max_tokens=4096,
)
return response.choices[0].message.content
# Step 3B: Generate Educator Feedback
def generate_educator_feedback(client_openai, client_hf_mistral, client_hf_llama, differences, model_choice, prompts):
st.write("Model (Educator Feedback): ", model_choice)
user_prompt=f"""
{prompts[STEP3B_USER_PROMPT]}
{json.dumps(differences, indent=2)}
"""
if model_choice in [HF_MODEL_MISTRAL]:
response = client_hf_mistral.chat_completion(
[
{
"role": "system",
"content": prompts[STEP3B_SYSTEM_PROMPT],
},
{"role": "user", "content": user_prompt},
],
max_tokens=1024,
temperature=0.2,
)
return response["choices"][0]["message"]["content"]
elif model_choice in [HF_MODEL_LLAMA]:
response = client_hf_llama.chat_completion(
[
{
"role": "system",
"content": prompts[STEP3B_SYSTEM_PROMPT],
},
{"role": "user", "content": user_prompt},
],
max_tokens=1024,
temperature=0.2,
)
return response["choices"][0]["message"]["content"]
else:
response = client_openai.chat.completions.create(
model=model_choice,
messages=[
{
"role": "system",
"content": prompts[STEP3B_SYSTEM_PROMPT],
},
{
"role": "user",
"content": user_prompt,
},
],
temperature=0.2,
top_p=0.1,
max_tokens=4096,
)
return response.choices[0].message.content
# Streamlit app layout
st.set_page_config(
page_title="LLM-based Analysis and Feedback of a UML or ER Diagram",
page_icon="πŸ“",
initial_sidebar_state="expanded",
)
st.title("LLM-based Analysis and Feedback of a UML or ERD Diagram")
st.write("The pipeline consists of three steps:")
st.write("1. Extract PlantUML code from the uploaded UML or ER diagrams using GPT-4o or GPT-4o Mini.")
st.write("2. Compare the extracted PlantUML code.")
st.write("3. Analyse the differences and present them in a structured format.")
diagram_type = st.selectbox("Select the diagram type", ["UML", "ERD"])
prompts = fetch_prompts_from_google_doc(diagram_type)
openai_api_key = st.text_input("OpenAI API key", type="password")
hf_api_key = st.text_input("Hugging Face API key", type="password")
if openai_api_key and hf_api_key:
client_openai = OpenAI(api_key=openai_api_key)
client_hf_mistral = InferenceClient(model=HF_MODEL_MISTRAL, token=hf_api_key)
client_hf_llama = InferenceClient(model=HF_MODEL_LLAMA, token=hf_api_key)
model_choice_step1 = st.selectbox("Select the model for Step 1", ["gpt-4o", "gpt-4o-mini"])
model_choice_step2 = st.selectbox("Select the model for Step 2", [HF_MODEL_MISTRAL, HF_MODEL_LLAMA, "gpt-4o", "gpt-4o-mini"])
model_choice_step3 = st.selectbox("Select the model for Step 3", [HF_MODEL_MISTRAL, HF_MODEL_LLAMA, "gpt-4o", "gpt-4o-mini"])
st.subheader("Step 1: PlantUML Code Extraction using GPT-4o or GPT-4o Mini")
col1, col2 = st.columns(2)
with col1:
uploaded_instructor_solution = st.file_uploader(
"Upload Instructor " + ("UML" if diagram_type == 'UML' else "ER") + " Diagram", type=["jpg", "jpeg", "png"]
)
with col2:
uploaded_student_solution = st.file_uploader(
"Upload Student " + ("UML" if diagram_type == 'UML' else "ER") + " Diagram", type=["jpg", "jpeg", "png"]
)
if (uploaded_instructor_solution is not None and uploaded_student_solution is not None):
try:
with st.spinner(
"Extracting PlantUML code from the uploaded " + ("UML" if diagram_type == 'UML' else "ER") + " diagrams..."
):
with col1:
st.image(
uploaded_instructor_solution,
caption="Uploaded Instructor " + ("UML" if diagram_type == 'UML' else "ER") + " Diagram",
use_container_width=True,
)
st.write("")
plantuml_instructor_solution = extract_plantuml_code(
client_openai, uploaded_instructor_solution, model_choice_step1, prompts
)
with col2:
st.write("")
st.image(
uploaded_student_solution,
caption="Uploaded Student " + ("UML" if diagram_type == 'UML' else "ER") + " Diagram",
use_container_width=True,
)
st.write("")
plantuml_student_solution = extract_plantuml_code(
client_openai, uploaded_student_solution, model_choice_step1, prompts
)
st.write("Extracted PlantUML Code")
col1, col2 = st.columns(2)
with col1:
st.text_area(
"PlantUML Code for Instructor Solution",
plantuml_instructor_solution,
height=600,
)
with col2:
st.text_area(
"PlantUML Code for Student Solution",
plantuml_student_solution,
height=600,
)
st.subheader("Step 2: " + ("UML" if diagram_type == 'UML' else "ER") + " Diagram Comparison")
with st.spinner("Comparing instructor and student " + ("UML" if diagram_type == 'UML' else "ER") + " diagrams..."):
differences = compare_plantuml(
client_openai,
client_hf_mistral,
client_hf_llama,
plantuml_instructor_solution,
plantuml_student_solution,
model_choice_step2,
prompts,
diagram_type
)
with st.expander("View differences"):
for difference in differences.split("\n"):
st.write(difference)
st.subheader("Step 3: Structured Feedback")
with st.spinner("Preparing structured feedback..."):
student_feedback = generate_student_feedback(client_openai, client_hf_mistral, client_hf_llama, differences, model_choice_step3, prompts)
educator_feedback = generate_educator_feedback(client_openai, client_hf_mistral, client_hf_llama, differences, model_choice_step3, prompts)
col1, col2 = st.columns(2)
with col1:
st.write("Student Feedback")
st.markdown(f"{student_feedback}")
with col2:
st.write("Educator Feedback")
st.markdown(f"{educator_feedback}")
except Exception as e:
st.error(f"Error: {e}")
else:
if not openai_api_key:
st.error("Please provide a valid OpenAI API key.")
else:
st.error("Please provide a valid Hugging Face API key.")