Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from openai import OpenAI
|
4 |
+
import base64
|
5 |
+
import json
|
6 |
+
import requests
|
7 |
+
import re
|
8 |
+
import pandas as pd
|
9 |
+
from huggingface_hub import InferenceClient
|
10 |
+
|
11 |
+
HF_MODEL_MISTRAL = "mistralai/Mistral-7B-Instruct-v0.3"
|
12 |
+
HF_MODEL_LLAMA = "meta-llama/Llama-3.3-70B-Instruct"
|
13 |
+
|
14 |
+
PROMPTS_DOC_URL = "https://docs.google.com/document/d/17rB_0BGQ4DGT7pwOV8O58sNvzBWgywq6ZDgzyJ9pmjs/export?format=txt"
|
15 |
+
|
16 |
+
STEP1_SYSTEM_PROMPT = "STEP1 SYSPROMPT"
|
17 |
+
STEP1_USER_PROMPT = "STEP1 USERPROMPT"
|
18 |
+
STEP2_SYSTEM_PROMPT = "STEP2 SYSPROMPT"
|
19 |
+
STEP2_USER_PROMPT = "STEP2 USERPROMPT"
|
20 |
+
STEP3A_SYSTEM_PROMPT = "STEP3A SYSPROMPT"
|
21 |
+
STEP3A_USER_PROMPT = "STEP3A USERPROMPT"
|
22 |
+
STEP3B_SYSTEM_PROMPT = "STEP3B SYSPROMPT"
|
23 |
+
STEP3B_USER_PROMPT = "STEP3B USERPROMPT"
|
24 |
+
|
25 |
+
|
26 |
+
def fetch_prompts_from_google_doc():
|
27 |
+
response = requests.get(PROMPTS_DOC_URL)
|
28 |
+
if response.status_code != 200:
|
29 |
+
raise Exception("Failed to fetch document")
|
30 |
+
|
31 |
+
text = response.text
|
32 |
+
prompts = {}
|
33 |
+
|
34 |
+
pattern = r"\{BEGIN (.*?)\}([\s\S]*?)\{END \1\}"
|
35 |
+
matches = re.findall(pattern, text)
|
36 |
+
|
37 |
+
for key, content in matches:
|
38 |
+
prompts[key.strip()] = content.strip()
|
39 |
+
|
40 |
+
return prompts
|
41 |
+
|
42 |
+
# Step 1: Extract PlantUML Code
|
43 |
+
def extract_plantuml_code(client_openai, uploaded_file, model_choice, prompts):
|
44 |
+
|
45 |
+
st.write("Model: ", model_choice)
|
46 |
+
|
47 |
+
encoded_image = base64.b64encode(uploaded_file.getvalue()).decode("utf-8")
|
48 |
+
|
49 |
+
response = client_openai.chat.completions.create(
|
50 |
+
model=model_choice,
|
51 |
+
messages=[
|
52 |
+
{
|
53 |
+
"role": "system",
|
54 |
+
"content": prompts[STEP1_SYSTEM_PROMPT],
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"role": "user",
|
58 |
+
"content": [
|
59 |
+
{"type": "text", "text": prompts[STEP1_USER_PROMPT]},
|
60 |
+
{
|
61 |
+
"type": "image_url",
|
62 |
+
"image_url": {"url": f"data:image/png;base64,{encoded_image}"},
|
63 |
+
},
|
64 |
+
],
|
65 |
+
},
|
66 |
+
],
|
67 |
+
temperature=0.2,
|
68 |
+
top_p=0.1,
|
69 |
+
max_tokens=4096,
|
70 |
+
)
|
71 |
+
|
72 |
+
return response.choices[0].message.content
|
73 |
+
|
74 |
+
|
75 |
+
# Step 2: Compare PlantUML Code
|
76 |
+
def compare_plantuml(client_openai, client_hf_mistral, client_hf_llama, plantuml_instructor, plantuml_student, model_choice, prompts):
|
77 |
+
|
78 |
+
st.write("Model: ", model_choice)
|
79 |
+
|
80 |
+
user_prompt=f"""
|
81 |
+
{prompts[STEP2_USER_PROMPT]}
|
82 |
+
|
83 |
+
**Instructor's UML:**
|
84 |
+
{plantuml_instructor}
|
85 |
+
|
86 |
+
**Student's UML:**
|
87 |
+
{plantuml_student}
|
88 |
+
"""
|
89 |
+
|
90 |
+
if model_choice in [HF_MODEL_MISTRAL]:
|
91 |
+
response = client_hf_mistral.chat_completion(
|
92 |
+
[
|
93 |
+
{
|
94 |
+
"role": "system",
|
95 |
+
"content": prompts[STEP2_SYSTEM_PROMPT],
|
96 |
+
},
|
97 |
+
{"role": "user", "content": user_prompt},
|
98 |
+
],
|
99 |
+
max_tokens=1024,
|
100 |
+
temperature=0.2,
|
101 |
+
)
|
102 |
+
return response["choices"][0]["message"]["content"]
|
103 |
+
|
104 |
+
elif model_choice in [HF_MODEL_LLAMA]:
|
105 |
+
response = client_hf_llama.chat_completion(
|
106 |
+
[
|
107 |
+
{
|
108 |
+
"role": "system",
|
109 |
+
"content": prompts[STEP2_SYSTEM_PROMPT],
|
110 |
+
},
|
111 |
+
{"role": "user", "content": user_prompt},
|
112 |
+
],
|
113 |
+
max_tokens=1024,
|
114 |
+
temperature=0.2,
|
115 |
+
)
|
116 |
+
return response["choices"][0]["message"]["content"]
|
117 |
+
|
118 |
+
else:
|
119 |
+
response = client_openai.chat.completions.create(
|
120 |
+
model=model_choice,
|
121 |
+
messages=[
|
122 |
+
{
|
123 |
+
"role": "system",
|
124 |
+
"content": prompts[STEP2_SYSTEM_PROMPT],
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"role": "user",
|
128 |
+
"content": user_prompt,
|
129 |
+
},
|
130 |
+
],
|
131 |
+
temperature=0.2,
|
132 |
+
top_p=0.1,
|
133 |
+
max_tokens=4096,
|
134 |
+
)
|
135 |
+
return response.choices[0].message.content
|
136 |
+
|
137 |
+
# Step 3A: Generate Student Feedback
|
138 |
+
def generate_student_feedback(client_openai, client_hf_mistral, client_hf_llama, differences, model_choice, prompts):
|
139 |
+
|
140 |
+
st.write("Model (Student Feedback):", model_choice)
|
141 |
+
|
142 |
+
user_prompt=f"""
|
143 |
+
{prompts[STEP3A_USER_PROMPT]}
|
144 |
+
{json.dumps(differences, indent=2)}
|
145 |
+
"""
|
146 |
+
|
147 |
+
if model_choice in [HF_MODEL_MISTRAL]:
|
148 |
+
response = client_hf_mistral.chat_completion(
|
149 |
+
[
|
150 |
+
{
|
151 |
+
"role": "system",
|
152 |
+
"content": prompts[STEP3A_SYSTEM_PROMPT],
|
153 |
+
},
|
154 |
+
{"role": "user", "content": user_prompt},
|
155 |
+
],
|
156 |
+
max_tokens=1024,
|
157 |
+
temperature=0.2,
|
158 |
+
)
|
159 |
+
|
160 |
+
return response["choices"][0]["message"]["content"]
|
161 |
+
|
162 |
+
elif model_choice in [HF_MODEL_LLAMA]:
|
163 |
+
response = client_hf_llama.chat_completion(
|
164 |
+
[
|
165 |
+
{
|
166 |
+
"role": "system",
|
167 |
+
"content": prompts[STEP3A_SYSTEM_PROMPT],
|
168 |
+
},
|
169 |
+
{"role": "user", "content": user_prompt},
|
170 |
+
],
|
171 |
+
max_tokens=1024,
|
172 |
+
temperature=0.2,
|
173 |
+
)
|
174 |
+
|
175 |
+
return response["choices"][0]["message"]["content"]
|
176 |
+
|
177 |
+
else:
|
178 |
+
response = client_openai.chat.completions.create(
|
179 |
+
model=model_choice,
|
180 |
+
messages=[
|
181 |
+
{
|
182 |
+
"role": "system",
|
183 |
+
"content": prompts[STEP3A_SYSTEM_PROMPT],
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"role": "user",
|
187 |
+
"content": user_prompt,
|
188 |
+
},
|
189 |
+
],
|
190 |
+
temperature=0.2,
|
191 |
+
top_p=0.1,
|
192 |
+
max_tokens=4096,
|
193 |
+
)
|
194 |
+
|
195 |
+
return response.choices[0].message.content
|
196 |
+
|
197 |
+
|
198 |
+
# Step 3B: Generate Educator Feedback
|
199 |
+
def generate_educator_feedback(client_openai, client_hf_mistral, client_hf_llama, differences, model_choice, prompts):
|
200 |
+
|
201 |
+
st.write("Model (Educator Feedback): ", model_choice)
|
202 |
+
|
203 |
+
user_prompt=f"""
|
204 |
+
{prompts[STEP3B_USER_PROMPT]}
|
205 |
+
{json.dumps(differences, indent=2)}
|
206 |
+
"""
|
207 |
+
|
208 |
+
if model_choice in [HF_MODEL_MISTRAL]:
|
209 |
+
response = client_hf_mistral.chat_completion(
|
210 |
+
[
|
211 |
+
{
|
212 |
+
"role": "system",
|
213 |
+
"content": prompts[STEP3B_SYSTEM_PROMPT],
|
214 |
+
},
|
215 |
+
{"role": "user", "content": user_prompt},
|
216 |
+
],
|
217 |
+
max_tokens=1024,
|
218 |
+
temperature=0.2,
|
219 |
+
)
|
220 |
+
|
221 |
+
return response["choices"][0]["message"]["content"]
|
222 |
+
|
223 |
+
elif model_choice in [HF_MODEL_LLAMA]:
|
224 |
+
response = client_hf_llama.chat_completion(
|
225 |
+
[
|
226 |
+
{
|
227 |
+
"role": "system",
|
228 |
+
"content": prompts[STEP3B_SYSTEM_PROMPT],
|
229 |
+
},
|
230 |
+
{"role": "user", "content": user_prompt},
|
231 |
+
],
|
232 |
+
max_tokens=1024,
|
233 |
+
temperature=0.2,
|
234 |
+
)
|
235 |
+
|
236 |
+
return response["choices"][0]["message"]["content"]
|
237 |
+
|
238 |
+
else:
|
239 |
+
response = client_openai.chat.completions.create(
|
240 |
+
model=model_choice,
|
241 |
+
messages=[
|
242 |
+
{
|
243 |
+
"role": "system",
|
244 |
+
"content": prompts[STEP3B_SYSTEM_PROMPT],
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"role": "user",
|
248 |
+
"content": user_prompt,
|
249 |
+
},
|
250 |
+
],
|
251 |
+
temperature=0.2,
|
252 |
+
top_p=0.1,
|
253 |
+
max_tokens=4096,
|
254 |
+
)
|
255 |
+
|
256 |
+
st.write(response)
|
257 |
+
|
258 |
+
return response.choices[0].message.content
|
259 |
+
|
260 |
+
|
261 |
+
# Streamlit app layout
|
262 |
+
st.title("LLM-based Analysis and Feedback of a UML Diagram")
|
263 |
+
st.write("The pipeline consists of three steps:")
|
264 |
+
st.write("1. Extract PlantUML code from the uploaded UML diagrams using GPT-4o or GPT-4o Mini.")
|
265 |
+
st.write("2. Compare the extracted PlantUML code.")
|
266 |
+
st.write("3. Analyse the differences and present them in a structured format.")
|
267 |
+
|
268 |
+
prompts = fetch_prompts_from_google_doc()
|
269 |
+
|
270 |
+
openai_api_key = st.text_input("OpenAI API key", type="password")
|
271 |
+
hf_api_key = st.text_input("Hugging Face API key", type="password")
|
272 |
+
|
273 |
+
if openai_api_key and hf_api_key:
|
274 |
+
client_openai = OpenAI(api_key=openai_api_key)
|
275 |
+
client_hf_mistral = InferenceClient(model=HF_MODEL_MISTRAL, token=hf_api_key)
|
276 |
+
client_hf_llama = InferenceClient(model=HF_MODEL_LLAMA, token=hf_api_key)
|
277 |
+
|
278 |
+
model_choice_step1 = st.selectbox("Select the model for Step 1", ["gpt-4o", "gpt-4o-mini"])
|
279 |
+
model_choice_step2 = st.selectbox("Select the model for Step 2", [HF_MODEL_MISTRAL, HF_MODEL_LLAMA, "gpt-4o", "gpt-4o-mini"])
|
280 |
+
model_choice_step3 = st.selectbox("Select the model for Step 3", [HF_MODEL_MISTRAL, HF_MODEL_LLAMA, "gpt-4o", "gpt-4o-mini"])
|
281 |
+
|
282 |
+
st.subheader("Step 1: PlantUML Code Extraction using GPT-4o or GPT-4o Mini")
|
283 |
+
|
284 |
+
col1, col2 = st.columns(2)
|
285 |
+
with col1:
|
286 |
+
uploaded_instructor_solution = st.file_uploader(
|
287 |
+
"Upload Instructor UML Diagram", type=["jpg", "jpeg", "png"]
|
288 |
+
)
|
289 |
+
with col2:
|
290 |
+
uploaded_student_solution = st.file_uploader(
|
291 |
+
"Upload Student UML Diagram", type=["jpg", "jpeg", "png"]
|
292 |
+
)
|
293 |
+
|
294 |
+
if (uploaded_instructor_solution is not None and uploaded_student_solution is not None):
|
295 |
+
try:
|
296 |
+
with st.spinner(
|
297 |
+
"Extracting PlantUML code from the uploaded UML diagrams..."
|
298 |
+
):
|
299 |
+
with col1:
|
300 |
+
st.image(
|
301 |
+
uploaded_instructor_solution,
|
302 |
+
caption="Uploaded Instructor UML Diagram",
|
303 |
+
use_container_width=True,
|
304 |
+
)
|
305 |
+
st.write("")
|
306 |
+
plantuml_instructor_solution = extract_plantuml_code(
|
307 |
+
client_openai, uploaded_instructor_solution, model_choice_step1, prompts
|
308 |
+
)
|
309 |
+
with col2:
|
310 |
+
st.write("")
|
311 |
+
st.image(
|
312 |
+
uploaded_student_solution,
|
313 |
+
caption="Uploaded Student UML Diagram",
|
314 |
+
use_container_width=True,
|
315 |
+
)
|
316 |
+
st.write("")
|
317 |
+
plantuml_student_solution = extract_plantuml_code(
|
318 |
+
client_openai, uploaded_student_solution, model_choice_step1, prompts
|
319 |
+
)
|
320 |
+
|
321 |
+
st.write("Extracted PlantUML Code")
|
322 |
+
col1, col2 = st.columns(2)
|
323 |
+
with col1:
|
324 |
+
st.text_area(
|
325 |
+
"PlantUML Code for Instructor Solution",
|
326 |
+
plantuml_instructor_solution,
|
327 |
+
height=600,
|
328 |
+
)
|
329 |
+
with col2:
|
330 |
+
st.text_area(
|
331 |
+
"PlantUML Code for Student Solution",
|
332 |
+
plantuml_student_solution,
|
333 |
+
height=600,
|
334 |
+
)
|
335 |
+
|
336 |
+
st.subheader("Step 2: UML Diagram Comparison")
|
337 |
+
with st.spinner("Comparing instructor and student UML diagrams..."):
|
338 |
+
differences = compare_plantuml(
|
339 |
+
client_openai,
|
340 |
+
client_hf_mistral,
|
341 |
+
client_hf_llama,
|
342 |
+
plantuml_instructor_solution,
|
343 |
+
plantuml_student_solution,
|
344 |
+
model_choice_step2,
|
345 |
+
prompts
|
346 |
+
)
|
347 |
+
with st.expander("View differences"):
|
348 |
+
for difference in differences.split("\n"):
|
349 |
+
st.write(difference)
|
350 |
+
|
351 |
+
st.subheader("Step 3: Structured Feedback")
|
352 |
+
with st.spinner("Preparing structured feedback..."):
|
353 |
+
student_feedback = generate_student_feedback(client_openai, client_hf_mistral, client_hf_llama, differences, model_choice_step3, prompts)
|
354 |
+
educator_feedback = generate_educator_feedback(client_openai, client_hf_mistral, client_hf_llama, differences, model_choice_step3, prompts)
|
355 |
+
|
356 |
+
col1, col2 = st.columns(2)
|
357 |
+
with col1:
|
358 |
+
st.write("Student Feedback")
|
359 |
+
st.markdown(f"{student_feedback}")
|
360 |
+
with col2:
|
361 |
+
st.write("Educator Feedback")
|
362 |
+
st.markdown(f"{educator_feedback}")
|
363 |
+
|
364 |
+
except Exception as e:
|
365 |
+
st.error(f"Error: {e}")
|
366 |
+
else:
|
367 |
+
if not openai_api_key:
|
368 |
+
st.error("Please provide a valid OpenAI API key.")
|
369 |
+
else:
|
370 |
+
st.error("Please provide a valid Hugging Face API key.")
|