|
import os
|
|
import torch
|
|
import random
|
|
import numpy as np
|
|
import gradio as gr
|
|
import soundfile as sf
|
|
from transformers import T5Tokenizer, T5EncoderModel
|
|
from diffusers import DDIMScheduler
|
|
from src.models.conditioners import MaskDiT
|
|
from src.modules.autoencoder_wrapper import Autoencoder
|
|
from src.inference import inference
|
|
from src.utils import load_yaml_with_includes
|
|
|
|
|
|
|
|
def load_models(config_name, ckpt_path, vae_path, device):
|
|
params = load_yaml_with_includes(config_name)
|
|
|
|
|
|
autoencoder = Autoencoder(ckpt_path=vae_path,
|
|
model_type=params['autoencoder']['name'],
|
|
quantization_first=params['autoencoder']['q_first']).to(device)
|
|
autoencoder.eval()
|
|
|
|
|
|
tokenizer = T5Tokenizer.from_pretrained(params['text_encoder']['model'])
|
|
text_encoder = T5EncoderModel.from_pretrained(params['text_encoder']['model']).to(device)
|
|
text_encoder.eval()
|
|
|
|
|
|
unet = MaskDiT(**params['model']).to(device)
|
|
unet.load_state_dict(torch.load(ckpt_path)['model'])
|
|
unet.eval()
|
|
|
|
|
|
noise_scheduler = DDIMScheduler(**params['diff'])
|
|
|
|
return autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
|
|
config_name = 'ckpts/ezaudio-xl.yml'
|
|
ckpt_path = 'ckpts/s3/ezaudio_s3_xl.pt'
|
|
vae_path = 'ckpts/vae/1m.pt'
|
|
save_path = 'output/'
|
|
os.makedirs(save_path, exist_ok=True)
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params = load_models(config_name, ckpt_path, vae_path,
|
|
device)
|
|
|
|
latents = torch.randn((1, 128, 128), device=device)
|
|
noise = torch.randn_like(latents)
|
|
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (1,), device=device)
|
|
_ = noise_scheduler.add_noise(latents, noise, timesteps)
|
|
|
|
|
|
|
|
def generate_audio(text, length,
|
|
guidance_scale, guidance_rescale, ddim_steps, eta,
|
|
random_seed, randomize_seed):
|
|
neg_text = None
|
|
length = length * params['autoencoder']['latent_sr']
|
|
|
|
if randomize_seed:
|
|
random_seed = random.randint(0, MAX_SEED)
|
|
|
|
pred = inference(autoencoder, unet, None, None,
|
|
tokenizer, text_encoder,
|
|
params, noise_scheduler,
|
|
text, neg_text,
|
|
length,
|
|
guidance_scale, guidance_rescale,
|
|
ddim_steps, eta, random_seed,
|
|
device)
|
|
|
|
pred = pred.cpu().numpy().squeeze(0).squeeze(0)
|
|
|
|
|
|
|
|
return params['autoencoder']['sr'], pred
|
|
|
|
|
|
|
|
def gradio_interface():
|
|
|
|
text_input = gr.Textbox(label="Text Prompt", value="the sound of dog barking")
|
|
length_input = gr.Slider(minimum=1, maximum=10, step=1, value=10, label="Audio Length (in seconds)")
|
|
|
|
|
|
guidance_scale_input = gr.Slider(minimum=1.0, maximum=10, step=0.1, value=5, label="Guidance Scale")
|
|
guidance_rescale_input = gr.Slider(minimum=0.0, maximum=1, step=0.05, value=0.75, label="Guidance Rescale")
|
|
ddim_steps_input = gr.Slider(minimum=25, maximum=200, step=5, value=100, label="DDIM Steps")
|
|
eta_input = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1, label="Eta")
|
|
random_seed_input = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, value=0,)
|
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
|
|
|
|
|
|
output_audio = gr.Audio(label="Converted Audio", type="numpy")
|
|
|
|
|
|
gr.Interface(
|
|
fn=generate_audio,
|
|
inputs=[text_input, length_input, guidance_scale_input, guidance_rescale_input, ddim_steps_input, eta_input,
|
|
random_seed_input, randomize_seed],
|
|
outputs=output_audio,
|
|
title="EzAudio Text-to-Audio Generator",
|
|
description="Generate audio from text using a diffusion model. Adjust advanced settings for more control.",
|
|
allow_flagging="never"
|
|
).launch()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
gradio_interface()
|
|
|