|
from functools import reduce
|
|
import math
|
|
import numpy as np
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
|
|
from torch.backends.cuda import sdp_kernel
|
|
from packaging import version
|
|
|
|
from .nn.layers import Snake1d
|
|
|
|
|
|
class ResidualBlock(nn.Module):
|
|
def __init__(self, main, skip=None):
|
|
super().__init__()
|
|
self.main = nn.Sequential(*main)
|
|
self.skip = skip if skip else nn.Identity()
|
|
|
|
def forward(self, input):
|
|
return self.main(input) + self.skip(input)
|
|
|
|
|
|
class ResConvBlock(ResidualBlock):
|
|
def __init__(self, c_in, c_mid, c_out, is_last=False, kernel_size=5, conv_bias=True, use_snake=False):
|
|
skip = None if c_in == c_out else nn.Conv1d(c_in, c_out, 1, bias=False)
|
|
super().__init__([
|
|
nn.Conv1d(c_in, c_mid, kernel_size, padding=kernel_size//2, bias=conv_bias),
|
|
nn.GroupNorm(1, c_mid),
|
|
Snake1d(c_mid) if use_snake else nn.GELU(),
|
|
nn.Conv1d(c_mid, c_out, kernel_size, padding=kernel_size//2, bias=conv_bias),
|
|
nn.GroupNorm(1, c_out) if not is_last else nn.Identity(),
|
|
(Snake1d(c_out) if use_snake else nn.GELU()) if not is_last else nn.Identity(),
|
|
], skip)
|
|
|
|
|
|
class SelfAttention1d(nn.Module):
|
|
def __init__(self, c_in, n_head=1, dropout_rate=0.):
|
|
super().__init__()
|
|
assert c_in % n_head == 0
|
|
self.norm = nn.GroupNorm(1, c_in)
|
|
self.n_head = n_head
|
|
self.qkv_proj = nn.Conv1d(c_in, c_in * 3, 1)
|
|
self.out_proj = nn.Conv1d(c_in, c_in, 1)
|
|
self.dropout = nn.Dropout(dropout_rate, inplace=True)
|
|
|
|
self.use_flash = torch.cuda.is_available() and version.parse(torch.__version__) >= version.parse('2.0.0')
|
|
|
|
if not self.use_flash:
|
|
return
|
|
|
|
device_properties = torch.cuda.get_device_properties(torch.device('cuda'))
|
|
|
|
if device_properties.major == 8 and device_properties.minor == 0:
|
|
|
|
self.sdp_kernel_config = (True, False, False)
|
|
else:
|
|
|
|
self.sdp_kernel_config = (False, True, True)
|
|
|
|
def forward(self, input):
|
|
n, c, s = input.shape
|
|
qkv = self.qkv_proj(self.norm(input))
|
|
qkv = qkv.view(
|
|
[n, self.n_head * 3, c // self.n_head, s]).transpose(2, 3)
|
|
q, k, v = qkv.chunk(3, dim=1)
|
|
scale = k.shape[3]**-0.25
|
|
|
|
if self.use_flash:
|
|
with sdp_kernel(*self.sdp_kernel_config):
|
|
y = F.scaled_dot_product_attention(q, k, v, is_causal=False).contiguous().view([n, c, s])
|
|
else:
|
|
att = ((q * scale) @ (k.transpose(2, 3) * scale)).softmax(3)
|
|
y = (att @ v).transpose(2, 3).contiguous().view([n, c, s])
|
|
|
|
|
|
return input + self.dropout(self.out_proj(y))
|
|
|
|
|
|
class SkipBlock(nn.Module):
|
|
def __init__(self, *main):
|
|
super().__init__()
|
|
self.main = nn.Sequential(*main)
|
|
|
|
def forward(self, input):
|
|
return torch.cat([self.main(input), input], dim=1)
|
|
|
|
|
|
class FourierFeatures(nn.Module):
|
|
def __init__(self, in_features, out_features, std=1.):
|
|
super().__init__()
|
|
assert out_features % 2 == 0
|
|
self.weight = nn.Parameter(torch.randn(
|
|
[out_features // 2, in_features]) * std)
|
|
|
|
def forward(self, input):
|
|
f = 2 * math.pi * input @ self.weight.T
|
|
return torch.cat([f.cos(), f.sin()], dim=-1)
|
|
|
|
|
|
def expand_to_planes(input, shape):
|
|
return input[..., None].repeat([1, 1, shape[2]])
|
|
|
|
_kernels = {
|
|
'linear':
|
|
[1 / 8, 3 / 8, 3 / 8, 1 / 8],
|
|
'cubic':
|
|
[-0.01171875, -0.03515625, 0.11328125, 0.43359375,
|
|
0.43359375, 0.11328125, -0.03515625, -0.01171875],
|
|
'lanczos3':
|
|
[0.003689131001010537, 0.015056144446134567, -0.03399861603975296,
|
|
-0.066637322306633, 0.13550527393817902, 0.44638532400131226,
|
|
0.44638532400131226, 0.13550527393817902, -0.066637322306633,
|
|
-0.03399861603975296, 0.015056144446134567, 0.003689131001010537]
|
|
}
|
|
|
|
|
|
class Downsample1d(nn.Module):
|
|
def __init__(self, kernel='linear', pad_mode='reflect', channels_last=False):
|
|
super().__init__()
|
|
self.pad_mode = pad_mode
|
|
kernel_1d = torch.tensor(_kernels[kernel])
|
|
self.pad = kernel_1d.shape[0] // 2 - 1
|
|
self.register_buffer('kernel', kernel_1d)
|
|
self.channels_last = channels_last
|
|
|
|
def forward(self, x):
|
|
if self.channels_last:
|
|
x = x.permute(0, 2, 1)
|
|
x = F.pad(x, (self.pad,) * 2, self.pad_mode)
|
|
weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0]])
|
|
indices = torch.arange(x.shape[1], device=x.device)
|
|
weight[indices, indices] = self.kernel.to(weight)
|
|
x = F.conv1d(x, weight, stride=2)
|
|
if self.channels_last:
|
|
x = x.permute(0, 2, 1)
|
|
return x
|
|
|
|
|
|
class Upsample1d(nn.Module):
|
|
def __init__(self, kernel='linear', pad_mode='reflect', channels_last=False):
|
|
super().__init__()
|
|
self.pad_mode = pad_mode
|
|
kernel_1d = torch.tensor(_kernels[kernel]) * 2
|
|
self.pad = kernel_1d.shape[0] // 2 - 1
|
|
self.register_buffer('kernel', kernel_1d)
|
|
self.channels_last = channels_last
|
|
|
|
def forward(self, x):
|
|
if self.channels_last:
|
|
x = x.permute(0, 2, 1)
|
|
x = F.pad(x, ((self.pad + 1) // 2,) * 2, self.pad_mode)
|
|
weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0]])
|
|
indices = torch.arange(x.shape[1], device=x.device)
|
|
weight[indices, indices] = self.kernel.to(weight)
|
|
x = F.conv_transpose1d(x, weight, stride=2, padding=self.pad * 2 + 1)
|
|
if self.channels_last:
|
|
x = x.permute(0, 2, 1)
|
|
return x
|
|
|
|
|
|
def Downsample1d_2(
|
|
in_channels: int, out_channels: int, factor: int, kernel_multiplier: int = 2
|
|
) -> nn.Module:
|
|
assert kernel_multiplier % 2 == 0, "Kernel multiplier must be even"
|
|
|
|
return nn.Conv1d(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=factor * kernel_multiplier + 1,
|
|
stride=factor,
|
|
padding=factor * (kernel_multiplier // 2),
|
|
)
|
|
|
|
|
|
def Upsample1d_2(
|
|
in_channels: int, out_channels: int, factor: int, use_nearest: bool = False
|
|
) -> nn.Module:
|
|
|
|
if factor == 1:
|
|
return nn.Conv1d(
|
|
in_channels=in_channels, out_channels=out_channels, kernel_size=3, padding=1
|
|
)
|
|
|
|
if use_nearest:
|
|
return nn.Sequential(
|
|
nn.Upsample(scale_factor=factor, mode="nearest"),
|
|
nn.Conv1d(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=3,
|
|
padding=1,
|
|
),
|
|
)
|
|
else:
|
|
return nn.ConvTranspose1d(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=factor * 2,
|
|
stride=factor,
|
|
padding=factor // 2 + factor % 2,
|
|
output_padding=factor % 2,
|
|
)
|
|
|
|
|
|
def zero_init(layer):
|
|
nn.init.zeros_(layer.weight)
|
|
if layer.bias is not None:
|
|
nn.init.zeros_(layer.bias)
|
|
return layer
|
|
|
|
|
|
def rms_norm(x, scale, eps):
|
|
dtype = reduce(torch.promote_types, (x.dtype, scale.dtype, torch.float32))
|
|
mean_sq = torch.mean(x.to(dtype)**2, dim=-1, keepdim=True)
|
|
scale = scale.to(dtype) * torch.rsqrt(mean_sq + eps)
|
|
return x * scale.to(x.dtype)
|
|
|
|
|
|
|
|
class AdaRMSNorm(nn.Module):
|
|
def __init__(self, features, cond_features, eps=1e-6):
|
|
super().__init__()
|
|
self.eps = eps
|
|
self.linear = zero_init(nn.Linear(cond_features, features, bias=False))
|
|
|
|
def extra_repr(self):
|
|
return f"eps={self.eps},"
|
|
|
|
def forward(self, x, cond):
|
|
return rms_norm(x, self.linear(cond)[:, None, :] + 1, self.eps)
|
|
|
|
|
|
def normalize(x, eps=1e-4):
|
|
dim = list(range(1, x.ndim))
|
|
n = torch.linalg.vector_norm(x, dim=dim, keepdim=True)
|
|
alpha = np.sqrt(n.numel() / x.numel())
|
|
return x / torch.add(eps, n, alpha=alpha)
|
|
|
|
|
|
class ForcedWNConv1d(nn.Module):
|
|
def __init__(self, in_channels, out_channels, kernel_size=1):
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.randn([out_channels, in_channels, kernel_size]))
|
|
|
|
def forward(self, x):
|
|
if self.training:
|
|
with torch.no_grad():
|
|
self.weight.copy_(normalize(self.weight))
|
|
|
|
fan_in = self.weight[0].numel()
|
|
|
|
w = normalize(self.weight) / math.sqrt(fan_in)
|
|
|
|
return F.conv1d(x, w, padding='same')
|
|
|
|
|
|
|
|
use_compile = True
|
|
|
|
def compile(function, *args, **kwargs):
|
|
if not use_compile:
|
|
return function
|
|
try:
|
|
return torch.compile(function, *args, **kwargs)
|
|
except RuntimeError:
|
|
return function
|
|
|
|
|
|
@compile
|
|
def linear_geglu(x, weight, bias=None):
|
|
x = x @ weight.mT
|
|
if bias is not None:
|
|
x = x + bias
|
|
x, gate = x.chunk(2, dim=-1)
|
|
return x * F.gelu(gate)
|
|
|
|
|
|
@compile
|
|
def rms_norm(x, scale, eps):
|
|
dtype = reduce(torch.promote_types, (x.dtype, scale.dtype, torch.float32))
|
|
mean_sq = torch.mean(x.to(dtype)**2, dim=-1, keepdim=True)
|
|
scale = scale.to(dtype) * torch.rsqrt(mean_sq + eps)
|
|
return x * scale.to(x.dtype)
|
|
|
|
|
|
|
|
|
|
class LinearGEGLU(nn.Linear):
|
|
def __init__(self, in_features, out_features, bias=True):
|
|
super().__init__(in_features, out_features * 2, bias=bias)
|
|
self.out_features = out_features
|
|
|
|
def forward(self, x):
|
|
return linear_geglu(x, self.weight, self.bias)
|
|
|
|
|
|
class RMSNorm(nn.Module):
|
|
def __init__(self, shape, fix_scale = False, eps=1e-6):
|
|
super().__init__()
|
|
self.eps = eps
|
|
|
|
if fix_scale:
|
|
self.register_buffer("scale", torch.ones(shape))
|
|
else:
|
|
self.scale = nn.Parameter(torch.ones(shape))
|
|
|
|
def extra_repr(self):
|
|
return f"shape={tuple(self.scale.shape)}, eps={self.eps}"
|
|
|
|
def forward(self, x):
|
|
return rms_norm(x, self.scale, self.eps)
|
|
|
|
|
|
|
|
@torch.jit.script
|
|
def snake_beta(x, alpha, beta):
|
|
return x + (1.0 / (beta + 0.000000001)) * pow(torch.sin(x * alpha), 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SnakeBeta(nn.Module):
|
|
|
|
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True):
|
|
super(SnakeBeta, self).__init__()
|
|
self.in_features = in_features
|
|
|
|
|
|
self.alpha_logscale = alpha_logscale
|
|
if self.alpha_logscale:
|
|
|
|
self.alpha = nn.Parameter(torch.zeros(in_features) * alpha)
|
|
self.beta = nn.Parameter(torch.zeros(in_features) * alpha)
|
|
else:
|
|
|
|
self.alpha = nn.Parameter(torch.ones(in_features) * alpha)
|
|
self.beta = nn.Parameter(torch.ones(in_features) * alpha)
|
|
|
|
self.alpha.requires_grad = alpha_trainable
|
|
self.beta.requires_grad = alpha_trainable
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
alpha = self.alpha.unsqueeze(0).unsqueeze(-1)
|
|
|
|
beta = self.beta.unsqueeze(0).unsqueeze(-1)
|
|
if self.alpha_logscale:
|
|
alpha = torch.exp(alpha)
|
|
beta = torch.exp(beta)
|
|
x = snake_beta(x, alpha, beta)
|
|
|
|
return x |