Spaces:
Running
Running
import DeviceDetector from "https://cdn.skypack.dev/[email protected]"; | |
// 用法: testSupport({client?: string, os?: string}[]) | |
// Client 和 os 是正则表达式。 | |
// 参见: https://cdn.jsdelivr.net/npm/[email protected]/README.md | |
// 了解 client 和 os 的合法值 | |
// 导入必要的库 | |
// 初始化速度和加速度图表 | |
let speedChart, accelerationChart; | |
let previousPoseData = null; | |
let lastTimestamp = 0; | |
testSupport([ | |
{ client: 'Chrome' }, | |
]); | |
function initCharts() { | |
const speedChartCtx = document.getElementById('speedChart').getContext('2d'); | |
const accelerationChartCtx = document.getElementById('accelerationChart').getContext('2d'); | |
speedChart = new Chart(speedChartCtx, { | |
type: 'line', | |
data: { | |
labels: [], | |
datasets: [{ | |
label: 'Movement Speed (px/s)', | |
data: [], | |
borderColor: 'rgba(75, 192, 192, 1)', | |
tension: 0.4, | |
borderWidth: 2, | |
fill: false | |
}] | |
}, | |
options: { | |
responsive: true, | |
maintainAspectRatio: false, | |
animation: { | |
duration: 0 | |
}, | |
scales: { | |
y: { | |
beginAtZero: true, | |
title: { | |
display: true, | |
text: 'Speed' | |
} | |
}, | |
x: { | |
title: { | |
display: true, | |
text: 'Time' | |
} | |
} | |
} | |
} | |
}); | |
accelerationChart = new Chart(accelerationChartCtx, { | |
type: 'line', | |
data: { | |
labels: [], | |
datasets: [{ | |
label: 'Acceleration (px/s²)', | |
data: [], | |
borderColor: 'rgba(255, 99, 132, 1)', | |
tension: 0.4, | |
borderWidth: 2, | |
fill: false | |
}] | |
}, | |
options: { | |
responsive: true, | |
maintainAspectRatio: false, | |
animation: { | |
duration: 0 | |
}, | |
scales: { | |
y: { | |
beginAtZero: true, | |
title: { | |
display: true, | |
text: 'Acceleration' | |
} | |
}, | |
x: { | |
title: { | |
display: true, | |
text: 'Time' | |
} | |
} | |
} | |
} | |
}); | |
} | |
// 计算姿态变化的速度和加速度 | |
function calculateMotionMetrics(currentPose, timestamp) { | |
if (!previousPoseData || !currentPose.poseLandmarks) { | |
previousPoseData = currentPose; | |
lastTimestamp = timestamp; | |
return { speed: 0, acceleration: 0 }; | |
} | |
const deltaTime = (timestamp - lastTimestamp) / 1000; // 转换为秒 | |
if (deltaTime === 0) return { speed: 0, acceleration: 0 }; | |
// 计算关键点的平均位移 | |
let totalDisplacement = 0; | |
let validPoints = 0; | |
currentPose.poseLandmarks.forEach((landmark, index) => { | |
if (previousPoseData.poseLandmarks[index]) { | |
const dx = landmark.x - previousPoseData.poseLandmarks[index].x; | |
const dy = landmark.y - previousPoseData.poseLandmarks[index].y; | |
const displacement = Math.sqrt(dx * dx + dy * dy); | |
totalDisplacement += displacement; | |
validPoints++; | |
} | |
}); | |
const averageDisplacement = validPoints > 0 ? totalDisplacement / validPoints : 0; | |
const currentSpeed = averageDisplacement / deltaTime; | |
// 计算加速度 | |
const previousSpeed = speedChart.data.datasets[0].data[speedChart.data.datasets[0].data.length - 1] || 0; | |
const acceleration = (currentSpeed - previousSpeed) / deltaTime; | |
// 更新先前数据 | |
previousPoseData = currentPose; | |
lastTimestamp = timestamp; | |
return { speed: currentSpeed, acceleration: acceleration }; | |
} | |
// 更新图表数据 | |
function updateCharts(metrics) { | |
const timestamp = new Date().toLocaleTimeString(); | |
const maxDataPoints = 50; // 限制数据点数量 | |
// 更新速度图表 | |
speedChart.data.labels.push(timestamp); | |
speedChart.data.datasets[0].data.push(metrics.speed); | |
if (speedChart.data.labels.length > maxDataPoints) { | |
speedChart.data.labels.shift(); | |
speedChart.data.datasets[0].data.shift(); | |
} | |
speedChart.update('none'); | |
// 更新加速度图表 | |
accelerationChart.data.labels.push(timestamp); | |
accelerationChart.data.datasets[0].data.push(metrics.acceleration); | |
if (accelerationChart.data.labels.length > maxDataPoints) { | |
accelerationChart.data.labels.shift(); | |
accelerationChart.data.datasets[0].data.shift(); | |
} | |
accelerationChart.update('none'); | |
} | |
function testSupport(supportedDevices) { | |
const deviceDetector = new DeviceDetector(); | |
const detectedDevice = deviceDetector.parse(navigator.userAgent); | |
let isSupported = false; | |
for (const device of supportedDevices) { | |
if (device.client !== undefined) { | |
const re = new RegExp(`^${device.client}$`); | |
if (!re.test(detectedDevice.client.name)) { | |
continue; | |
} | |
} | |
if (device.os !== undefined) { | |
const re = new RegExp(`^${device.os}$`); | |
if (!re.test(detectedDevice.os.name)) { | |
continue; | |
} | |
} | |
isSupported = true; | |
break; | |
} | |
if (!isSupported) { | |
alert(`此演示在 ${detectedDevice.client.name}/${detectedDevice.os.name} 上运行时 ` + | |
`目前不能很好地支持,继续使用需自担风险。`); | |
} | |
} | |
const controls = window; | |
const mpHolistic = window; | |
const drawingUtils = window; | |
const config = { locateFile: (file) => { | |
return `https://cdn.jsdelivr.net/npm/@mediapipe/holistic@` + | |
`${mpHolistic.VERSION}/${file}`; | |
} }; | |
// 我们的输入帧将来自这里。 | |
const videoElement = document.getElementsByClassName('input_video')[0]; | |
const canvasElement = document.getElementsByClassName('output_canvas')[0]; | |
const controlsElement = document.getElementsByClassName('control-panel')[0]; | |
const canvasCtx = canvasElement.getContext('2d'); | |
// 我们稍后会将这个添加到控制面板中,但我们会在这里保存它, | |
// 以便每次图形运行时都可以调用 tick()。 | |
const fpsControl = new controls.FPS(); | |
// 优化:在隐藏动画完成后关闭动画旋转器。 | |
const spinner = document.querySelector('.loading'); | |
spinner.ontransitionend = () => { | |
spinner.style.display = 'none'; | |
}; | |
function removeElements(landmarks, elements) { | |
for (const element of elements) { | |
delete landmarks[element]; | |
} | |
} | |
function removeLandmarks(results) { | |
if (results.poseLandmarks) { | |
removeElements(results.poseLandmarks, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 16, 17, 18, 19, 20, 21, 22]); | |
} | |
} | |
function connect(ctx, connectors) { | |
const canvas = ctx.canvas; | |
for (const connector of connectors) { | |
const from = connector[0]; | |
const to = connector[1]; | |
if (from && to) { | |
if (from.visibility && to.visibility && | |
(from.visibility < 0.1 || to.visibility < 0.1)) { | |
continue; | |
} | |
ctx.beginPath(); | |
ctx.moveTo(from.x * canvas.width, from.y * canvas.height); | |
ctx.lineTo(to.x * canvas.width, to.y * canvas.height); | |
ctx.stroke(); | |
} | |
} | |
} | |
let activeEffect = 'mask'; | |
function onResults(results) { | |
// 隐藏旋转器。 | |
document.body.classList.add('loaded'); | |
// 移除我们不想绘制的关键点。 | |
removeLandmarks(results); | |
// 更新帧率。 | |
fpsControl.tick(); | |
// 绘制叠加层。 | |
canvasCtx.save(); | |
canvasCtx.clearRect(0, 0, canvasElement.width, canvasElement.height); | |
if (results.segmentationMask) { | |
canvasCtx.drawImage(results.segmentationMask, 0, 0, canvasElement.width, canvasElement.height); | |
// 仅覆盖现有像素。 | |
if (activeEffect === 'mask' || activeEffect === 'both') { | |
canvasCtx.globalCompositeOperation = 'source-in'; | |
// 这可以是颜色、纹理或其他... | |
canvasCtx.fillStyle = '#00FF007F'; | |
canvasCtx.fillRect(0, 0, canvasElement.width, canvasElement.height); | |
} | |
else { | |
canvasCtx.globalCompositeOperation = 'source-out'; | |
canvasCtx.fillStyle = '#0000FF7F'; | |
canvasCtx.fillRect(0, 0, canvasElement.width, canvasElement.height); | |
} | |
// 仅覆盖缺失的像素。 | |
canvasCtx.globalCompositeOperation = 'destination-atop'; | |
canvasCtx.drawImage(results.image, 0, 0, canvasElement.width, canvasElement.height); | |
canvasCtx.globalCompositeOperation = 'source-over'; | |
} | |
else { | |
canvasCtx.drawImage(results.image, 0, 0, canvasElement.width, canvasElement.height); | |
} | |
// 连接肘部到手部。首先做这个,这样其他图形将绘制在这些标记之上。 | |
canvasCtx.lineWidth = 5; | |
if (results.poseLandmarks) { | |
if (results.rightHandLandmarks) { | |
canvasCtx.strokeStyle = 'white'; | |
connect(canvasCtx, [[ | |
results.poseLandmarks[mpHolistic.POSE_LANDMARKS.RIGHT_ELBOW], | |
results.rightHandLandmarks[0] | |
]]); | |
} | |
if (results.leftHandLandmarks) { | |
canvasCtx.strokeStyle = 'white'; | |
connect(canvasCtx, [[ | |
results.poseLandmarks[mpHolistic.POSE_LANDMARKS.LEFT_ELBOW], | |
results.leftHandLandmarks[0] | |
]]); | |
} | |
} | |
// 计算并更新动作指标 | |
const metrics = calculateMotionMetrics(results, performance.now()); | |
updateCharts(metrics); | |
// 姿势... | |
drawingUtils.drawConnectors(canvasCtx, results.poseLandmarks, mpHolistic.POSE_CONNECTIONS, { color: 'white' }); | |
drawingUtils.drawLandmarks(canvasCtx, Object.values(mpHolistic.POSE_LANDMARKS_LEFT) | |
.map(index => results.poseLandmarks[index]), { visibilityMin: 0.65, color: 'white', fillColor: 'rgb(255,138,0)' }); | |
drawingUtils.drawLandmarks(canvasCtx, Object.values(mpHolistic.POSE_LANDMARKS_RIGHT) | |
.map(index => results.poseLandmarks[index]), { visibilityMin: 0.65, color: 'white', fillColor: 'rgb(0,217,231)' }); | |
// 手... | |
drawingUtils.drawConnectors(canvasCtx, results.rightHandLandmarks, mpHolistic.HAND_CONNECTIONS, { color: 'white' }); | |
drawingUtils.drawLandmarks(canvasCtx, results.rightHandLandmarks, { | |
color: 'white', | |
fillColor: 'rgb(0,217,231)', | |
lineWidth: 2, | |
radius: (data) => { | |
return drawingUtils.lerp(data.from.z, -0.15, .1, 10, 1); | |
} | |
}); | |
drawingUtils.drawConnectors(canvasCtx, results.leftHandLandmarks, mpHolistic.HAND_CONNECTIONS, { color: 'white' }); | |
drawingUtils.drawLandmarks(canvasCtx, results.leftHandLandmarks, { | |
color: 'white', | |
fillColor: 'rgb(255,138,0)', | |
lineWidth: 2, | |
radius: (data) => { | |
return drawingUtils.lerp(data.from.z, -0.15, .1, 10, 1); | |
} | |
}); | |
// 面部... | |
drawingUtils.drawConnectors(canvasCtx, results.faceLandmarks, mpHolistic.FACEMESH_TESSELATION, { color: '#C0C0C070', lineWidth: 1 }); | |
drawingUtils.drawConnectors(canvasCtx, results.faceLandmarks, mpHolistic.FACEMESH_RIGHT_EYE, { color: 'rgb(0,217,231)' }); | |
drawingUtils.drawConnectors(canvasCtx, results.faceLandmarks, mpHolistic.FACEMESH_RIGHT_EYEBROW, { color: 'rgb(0,217,231)' }); | |
drawingUtils.drawConnectors(canvasCtx, results.faceLandmarks, mpHolistic.FACEMESH_LEFT_EYE, { color: 'rgb(255,138,0)' }); | |
drawingUtils.drawConnectors(canvasCtx, results.faceLandmarks, mpHolistic.FACEMESH_LEFT_EYEBROW, { color: 'rgb(255,138,0)' }); | |
drawingUtils.drawConnectors(canvasCtx, results.faceLandmarks, mpHolistic.FACEMESH_FACE_OVAL, { color: '#E0E0E0', lineWidth: 5 }); | |
drawingUtils.drawConnectors(canvasCtx, results.faceLandmarks, mpHolistic.FACEMESH_LIPS, { color: '#E0E0E0', lineWidth: 5 }); | |
canvasCtx.restore(); | |
} | |
// 视频上传处理 | |
function handleVideoUpload(file) { | |
const formData = new FormData(); | |
formData.append('video', file); | |
// 重置图表数据 | |
speedChart.data.labels = []; | |
speedChart.data.datasets[0].data = []; | |
accelerationChart.data.labels = []; | |
accelerationChart.data.datasets[0].data = []; | |
previousPoseData = null; | |
lastTimestamp = 0; | |
// 发送视频到服务器 | |
fetch('/upload_video', { | |
method: 'POST', | |
body: formData | |
}) | |
.then(response => response.json()) | |
.then(data => { | |
if (data.success) { | |
// 更新视频源 | |
videoElement.src = URL.createObjectURL(file); | |
videoElement.play(); | |
} else { | |
console.error('Video upload failed:', data.error); | |
} | |
}) | |
.catch(error => { | |
console.error('Error uploading video:', error); | |
}); | |
} | |
const holistic = new mpHolistic.Holistic(config); | |
holistic.onResults(onResults); | |
// 呈现一个控制面板,用户可以通过它操作解决方案选项。 | |
new controls | |
.ControlPanel(controlsElement, { | |
selfieMode: true, | |
modelComplexity: 1, | |
smoothLandmarks: true, | |
enableSegmentation: false, | |
smoothSegmentation: true, | |
minDetectionConfidence: 0.5, | |
minTrackingConfidence: 0.5, | |
effect: 'background', | |
}) | |
.add([ | |
new controls.StaticText({ title: 'MediaPipe 全身姿态检测' }), | |
fpsControl, | |
new controls.Toggle({ title: '自拍模式', field: 'selfieMode' }), | |
new controls.SourcePicker({ | |
onSourceChanged: () => { | |
// 重置,因为在源更改之间重置时,姿势会给出更好的结果。 | |
holistic.reset(); | |
}, | |
onFrame: async (input, size) => { | |
const aspect = size.height / size.width; | |
let width, height; | |
if (window.innerWidth > window.innerHeight) { | |
height = window.innerHeight; | |
width = height / aspect; | |
} | |
else { | |
width = window.innerWidth; | |
height = width * aspect; | |
} | |
canvasElement.width = width; | |
canvasElement.height = height; | |
await holistic.send({ image: input }); | |
}, | |
}), | |
new controls.Slider({ | |
title: '模型复杂度', | |
field: 'modelComplexity', | |
discrete: ['轻量', '完整', '重度'], | |
}), | |
new controls.Toggle({ title: '平滑关键点', field: 'smoothLandmarks' }), | |
new controls.Toggle({ title: '启用分割', field: 'enableSegmentation' }), | |
new controls.Toggle({ title: '平滑分割', field: 'smoothSegmentation' }), | |
new controls.Slider({ | |
title: '最小检测置信度', | |
field: 'minDetectionConfidence', | |
range: [0, 1], | |
step: 0.01 | |
}), | |
new controls.Slider({ | |
title: '最小跟踪置信度', | |
field: 'minTrackingConfidence', | |
range: [0, 1], | |
step: 0.01 | |
}), | |
new controls.Slider({ | |
title: '效果', | |
field: 'effect', | |
discrete: { 'background': '背景', 'mask': '前景' }, | |
}), | |
]) | |
.on(x => { | |
const options = x; | |
videoElement.classList.toggle('selfie', options.selfieMode); | |
activeEffect = x['effect']; | |
holistic.setOptions(options); | |
}); | |
// 初始化函数 | |
function initialize() { | |
// 初始化图表 | |
initCharts(); | |
// 设置视频上传处理 | |
const videoUploadInput = document.querySelector('#video-upload'); | |
if (videoUploadInput) { | |
videoUploadInput.addEventListener('change', (e) => { | |
if (e.target.files.length > 0) { | |
handleVideoUpload(e.target.files[0]); | |
} | |
}); | |
} | |
// 初始化姿态检测 | |
const holistic = new mpHolistic.Holistic(config); | |
holistic.onResults(onResults); | |
// ... 保持其他原有的初始化逻辑 ... | |
} | |
// 启动应用 | |
window.addEventListener('load', initialize); | |
// 保持原有的窗口大小调整逻辑 | |
window.addEventListener('resize', () => { | |
const aspect = videoElement.videoHeight / videoElement.videoWidth; | |
let width, height; | |
if (window.innerWidth > window.innerHeight) { | |
height = window.innerHeight; | |
width = height / aspect; | |
} else { | |
width = window.innerWidth; | |
height = width * aspect; | |
} | |
canvasElement.width = width; | |
canvasElement.height = height; | |
// 重新调整图表大小 | |
speedChart.resize(); | |
accelerationChart.resize(); | |
}); |