Spaces:
Sleeping
Sleeping
File size: 6,004 Bytes
cbf064a ccaf54e 19116df ccaf54e 3feed6e ccaf54e 3feed6e ccaf54e 3feed6e ccaf54e 3feed6e ccaf54e 3feed6e ccaf54e 3feed6e ccaf54e 3feed6e ccaf54e 3feed6e ccaf54e 3feed6e ccaf54e 3feed6e ccaf54e 3feed6e ccaf54e 3feed6e ccaf54e 3feed6e ccaf54e 3feed6e ccaf54e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
# Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("image-classification", model="google/efficientnet-b0")
# import streamlit as st
# from transformers import pipeline
# from PIL import Image
# MODEL_1 = "google/vit-base-patch16-224"
# MIN_ACEPTABLE_SCORE = 0.1
# MAX_N_LABELS = 5
# MODEL_2 = "nateraw/vit-age-classifier"
# MODELS = [
# "google/efficientnet-b0",
# "google/vit-base-patch16-224", #Classifição geral
# "nateraw/vit-age-classifier", #Classifição de idade
# "microsoft/resnet-50", #Classifição geral
# "Falconsai/nsfw_image_detection", #Classifição NSFW
# "cafeai/cafe_aesthetic", #Classifição de estética
# "microsoft/resnet-18", #Classifição geral
# "microsoft/resnet-34", #Classifição geral escolhida pelo copilot
# "microsoft/resnet-101", #Classifição geral escolhida pelo copilot
# "microsoft/resnet-152", #Classifição geral escolhida pelo copilot
# "microsoft/swin-tiny-patch4-window7-224",#Classifição geral
# "-- Reinstated on testing--",
# "microsoft/beit-base-patch16-224-pt22k-ft22k", #Classifição geral
# "-- New --",
# "-- Still in the testing process --",
# "facebook/convnext-large-224", #Classifição geral
# "timm/resnet50.a1_in1k", #Classifição geral
# "timm/mobilenetv3_large_100.ra_in1k", #Classifição geral
# "trpakov/vit-face-expression", #Classifição de expressão facial
# "rizvandwiki/gender-classification", #Classifição de gênero
# "#q-future/one-align", #Classifição geral
# "LukeJacob2023/nsfw-image-detector", #Classifição NSFW
# "vit-base-patch16-224-in21k", #Classifição geral
# "not-lain/deepfake", #Classifição deepfake
# "carbon225/vit-base-patch16-224-hentai", #Classifição hentai
# "facebook/convnext-base-224-22k-1k", #Classifição geral
# "facebook/convnext-large-224", #Classifição geral
# "facebook/convnext-tiny-224",#Classifição geral
# "nvidia/mit-b0", #Classifição geral
# "microsoft/resnet-18", #Classifição geral
# "microsoft/swinv2-base-patch4-window16-256", #Classifição geral
# "andupets/real-estate-image-classification", #Classifição de imóveis
# "timm/tf_efficientnetv2_s.in21k", #Classifição geral
# "timm/convnext_tiny.fb_in22k",
# "DunnBC22/vit-base-patch16-224-in21k_Human_Activity_Recognition", #Classifição de atividade humana
# "FatihC/swin-tiny-patch4-window7-224-finetuned-eurosat-watermark", #Classifição geral
# "aalonso-developer/vit-base-patch16-224-in21k-clothing-classifier", #Classifição de roupas
# "RickyIG/emotion_face_image_classification", #Classifição de emoções
# "shadowlilac/aesthetic-shadow" #Classifição de estética
# ]
# def classify(image, model):
# classifier = pipeline("image-classification", model=model)
# result= classifier(image)
# return result
# def save_result(result):
# st.write("In the future, this function will save the result in a database.")
# def print_result(result):
# comulative_discarded_score = 0
# for i in range(len(result)):
# if result[i]['score'] < MIN_ACEPTABLE_SCORE:
# comulative_discarded_score += result[i]['score']
# else:
# st.write(result[i]['label'])
# st.progress(result[i]['score'])
# st.write(result[i]['score'])
# st.write(f"comulative_discarded_score:")
# st.progress(comulative_discarded_score)
# st.write(comulative_discarded_score)
# def main():
# st.title("Image Classification")
# st.write("This is a simple web app to test and compare different image classifier models using Hugging Face's image-classification pipeline.")
# st.write("From time to time more models will be added to the list. If you want to add a model, please open an issue on the GitHub repository.")
# st.write("If you like this project, please consider liking it or buying me a coffee. It will help me to keep working on this and other projects. Thank you!")
# # Buy me a Coffee Setup
# bmc_link = "https://www.buymeacoffee.com/nuno.tome"
# # image_url = "https://helloimjessa.files.wordpress.com/2021/06/bmc-button.png?w=150" # Image URL
# image_url = "https://i.giphy.com/RETzc1mj7HpZPuNf3e.webp" # Image URL
# image_size = "150px" # Image size
# #image_link_markdown = f"<img src='{image_url}' width='25%'>"
# image_link_markdown = f"[]({bmc_link})"
# #image_link_markdown = f"[]({bmc_link})" # Create a clickable image link
# st.markdown(image_link_markdown, unsafe_allow_html=True) # Display the image link
# # Buy me a Coffee Setup
# #st.markdown("<img src='https://helloimjessa.files.wordpress.com/2021/06/bmc-button.png?w=1024' width='15%'>", unsafe_allow_html=True)
# input_image = st.file_uploader("Upload Image")
# shosen_model = st.selectbox("Select the model to use", MODELS)
# if input_image is not None:
# image_to_classify = Image.open(input_image)
# st.image(image_to_classify, caption="Uploaded Image")
# if st.button("Classify"):
# image_to_classify = Image.open(input_image)
# classification_obj1 =[]
# #avable_models = st.selectbox
# classification_result = classify(image_to_classify, shosen_model)
# classification_obj1.append(classification_result)
# print_result(classification_result)
# save_result(classification_result)
# if __name__ == "__main__":
# main() |