File size: 6,004 Bytes
cbf064a
 
 
 
 
 
ccaf54e
 
 
19116df
ccaf54e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3feed6e
ccaf54e
 
 
 
3feed6e
ccaf54e
 
3feed6e
ccaf54e
3feed6e
ccaf54e
 
 
 
 
 
 
 
 
 
 
 
3feed6e
 
 
ccaf54e
 
 
 
 
3feed6e
ccaf54e
 
 
 
3feed6e
ccaf54e
 
 
3feed6e
ccaf54e
3feed6e
ccaf54e
 
3feed6e
ccaf54e
3feed6e
ccaf54e
 
3feed6e
 
ccaf54e
 
 
 
 
 
 
3feed6e
ccaf54e
 
 
 
3feed6e
 
ccaf54e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# Use a pipeline as a high-level helper
from transformers import pipeline

pipe = pipeline("image-classification", model="google/efficientnet-b0")


# import streamlit as st
# from transformers import pipeline
# from PIL import Image

# MODEL_1 = "google/vit-base-patch16-224"
# MIN_ACEPTABLE_SCORE = 0.1
# MAX_N_LABELS = 5
# MODEL_2 = "nateraw/vit-age-classifier"
# MODELS = [
#             "google/efficientnet-b0",
#             "google/vit-base-patch16-224", #Classifição geral
#             "nateraw/vit-age-classifier", #Classifição de idade
#             "microsoft/resnet-50", #Classifição geral
#             "Falconsai/nsfw_image_detection", #Classifição NSFW
#             "cafeai/cafe_aesthetic", #Classifição de estética
#             "microsoft/resnet-18", #Classifição geral
#             "microsoft/resnet-34", #Classifição geral escolhida pelo copilot 
#             "microsoft/resnet-101", #Classifição geral escolhida pelo copilot 
#             "microsoft/resnet-152", #Classifição geral escolhida pelo copilot
#             "microsoft/swin-tiny-patch4-window7-224",#Classifição geral
#             "-- Reinstated on testing--",
#             "microsoft/beit-base-patch16-224-pt22k-ft22k", #Classifição geral
#             "-- New --",
#             "-- Still in the testing process --",
#             "facebook/convnext-large-224", #Classifição geral
#             "timm/resnet50.a1_in1k", #Classifição geral
#             "timm/mobilenetv3_large_100.ra_in1k", #Classifição geral
#             "trpakov/vit-face-expression", #Classifição de expressão facial
#             "rizvandwiki/gender-classification", #Classifição de gênero
#             "#q-future/one-align",  #Classifição geral
#             "LukeJacob2023/nsfw-image-detector", #Classifição NSFW   
#             "vit-base-patch16-224-in21k", #Classifição geral
#             "not-lain/deepfake", #Classifição deepfake
#             "carbon225/vit-base-patch16-224-hentai", #Classifição hentai    
#             "facebook/convnext-base-224-22k-1k", #Classifição geral
#             "facebook/convnext-large-224", #Classifição geral
#             "facebook/convnext-tiny-224",#Classifição geral
#             "nvidia/mit-b0", #Classifição geral
#             "microsoft/resnet-18", #Classifição geral
#             "microsoft/swinv2-base-patch4-window16-256", #Classifição geral
#             "andupets/real-estate-image-classification", #Classifição de imóveis
#             "timm/tf_efficientnetv2_s.in21k", #Classifição geral
#             "timm/convnext_tiny.fb_in22k",
#             "DunnBC22/vit-base-patch16-224-in21k_Human_Activity_Recognition", #Classifição de atividade humana
#             "FatihC/swin-tiny-patch4-window7-224-finetuned-eurosat-watermark", #Classifição geral
#             "aalonso-developer/vit-base-patch16-224-in21k-clothing-classifier", #Classifição de roupas
#             "RickyIG/emotion_face_image_classification", #Classifição de emoções
#             "shadowlilac/aesthetic-shadow" #Classifição de estética
#         ]

# def classify(image, model):
#     classifier = pipeline("image-classification", model=model)
#     result= classifier(image)
#     return result

# def save_result(result):
#     st.write("In the future, this function will save the result in a database.")

# def print_result(result):

#     comulative_discarded_score = 0
#     for i in range(len(result)):
#         if result[i]['score'] < MIN_ACEPTABLE_SCORE:
#             comulative_discarded_score += result[i]['score']
#         else:
#             st.write(result[i]['label'])
#             st.progress(result[i]['score'])
#             st.write(result[i]['score'])

#     st.write(f"comulative_discarded_score:")
#     st.progress(comulative_discarded_score)
#     st.write(comulative_discarded_score)
    


# def main():
#     st.title("Image Classification")
#     st.write("This is a simple web app to test and compare different image classifier models using Hugging Face's image-classification pipeline.")
#     st.write("From time to time more models will be added to the list. If you want to add a model, please open an issue on the GitHub repository.")
#     st.write("If you like this project, please consider liking it or buying me a coffee. It will help me to keep working on this and other projects. Thank you!")

#     # Buy me a Coffee Setup
#     bmc_link = "https://www.buymeacoffee.com/nuno.tome" 
#     # image_url = "https://helloimjessa.files.wordpress.com/2021/06/bmc-button.png?w=150" # Image URL
#     image_url = "https://i.giphy.com/RETzc1mj7HpZPuNf3e.webp" # Image URL
        
#     image_size = "150px" # Image size
#     #image_link_markdown = f"<img src='{image_url}' width='25%'>"
#     image_link_markdown = f"[![Buy Me a Coffee]({image_url})]({bmc_link})"

#     #image_link_markdown = f"[![Buy Me a Coffee]({image_url})]({bmc_link})" # Create a clickable image link

#     st.markdown(image_link_markdown, unsafe_allow_html=True) # Display the image link
#     # Buy me a Coffee Setup
    
#     #st.markdown("<img src='https://helloimjessa.files.wordpress.com/2021/06/bmc-button.png?w=1024' width='15%'>", unsafe_allow_html=True)
  
#     input_image = st.file_uploader("Upload Image")
#     shosen_model = st.selectbox("Select the model to use",  MODELS)
    
    
#     if input_image is not None:
#         image_to_classify = Image.open(input_image)
#         st.image(image_to_classify, caption="Uploaded Image")
#         if st.button("Classify"):
#             image_to_classify = Image.open(input_image)
#             classification_obj1 =[]
#             #avable_models = st.selectbox
            
#             classification_result = classify(image_to_classify, shosen_model)
#             classification_obj1.append(classification_result)
#             print_result(classification_result)
#             save_result(classification_result)


# if __name__ == "__main__":
#     main()