File size: 21,253 Bytes
f983829
 
 
2076634
f983829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2076634
 
 
f983829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ff04d3
a078fc4
f983829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a078fc4
f983829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
import discord
import asyncio
import aiohttp
import re
from time import time
from discord.ext import commands
from discord import app_commands
import requests
import json
from datetime import timedelta, datetime
import random
import os
import sys
import psutil
import logging

'''
    Discord AI 2 or dai2 is a Discord chat.
    Tested with KoboldCPP, theoretically can interact with KoboldAI API
    over a TPU.

    Character information included.
    Put Discord token in 'token.cfg'

    Based on https://github.com/xNul/chat-llama-discord-bot
'''

def read_token_from_config(file_path):
    try:
        with open(file_path, 'r') as file:
            token = file.read().strip()  # Read the token value and remove any leading/trailing whitespaces
        return token
    except FileNotFoundError:
        print(f"Error: File '{file_path}' not found.")
        return None

# MAIN CONFIGURATION
# Replace site_url with API location. Do not put / or /# at the end.
site_url = 'http://10.0.0.220:5001'
url = site_url + '/api/v1/generate'
TOKEN = read_token_from_config('token.cfg')
bot_name = 'Oshiko'
bot_technician = '303309686264954881'
default_opener = f"{bot_name} sits up on the bed while you enter the room."
headers = {'Content-Type': 'application/json'}
settings = {
                'prompt': '',
                'use_story': False, #KAIwebUI
                'use_memory': False, #KAIwebUI
                'use_authors_note': False, #KAIwebUI
                'use_world_info': False, #KAIwebUI
                'max_context_length': 2048,
                'max_length': 256,
                'rep_pen': 1.01,
                'rep_pen_range': 120,
                'rep_pen_slope': 0.9,
                'temperature': 1.08,
                'tfs': 0.96,
                'top_a': 0,
                'top_k': 40,
                'top_p': 0.9,
                'typical': 0.98,
                "sampler_order": [6,0,1,3,4,2,5],
                'singleline': False,
                'sampler_full_determinism': False,
                'frmttriminc': True, #Trim Incomplete Sentences
                'frmtrmblln': True, #Remove blank lines
                'stop_sequence': ["You:", "\nYou", "\nYour", "\n:"]

}

# Check if a key exists in a dict
def chkKey(collection, index):
    try:
        key = collection[index]
    except KeyError:
        key = False
    else:
        key = True
    return key

# POST Request
async def handle_request(data, mention):
    global url
    global headers
    #global blocking

    botserver_payload = settings
    botserver_payload['prompt'] = data
    
    #print(f'📻 Payload: {botserver_payload}')

    async with aiohttp.ClientSession() as session:
        try:
            async with session.post(url, json=botserver_payload, headers=headers, timeout=600) as response:
                return await response.text()
        except asyncio.TimeoutError:
            #blocking = False
            return print('Timeout Error')

# Subtract time() from time()
def subtract_time(less_recent : float, more_recent : float):
    return str(timedelta(seconds=(more_recent - less_recent)))

# String -> JSON
def parse_json_string(json_string):
    try:
        json_object = json.loads(json_string)
        return json_object
    except json.JSONDecodeError as e:
        print(f"Error decoding JSON: {e}")
        return None

def restart_program():
    """Restarts the current program, with file objects and descriptors
       cleanup
       (Thanks, Stack Overflow)
    """

    try:
        p = psutil.Process(os.getpid())
        for handler in p.get_open_files() + p.connections():
            os.close(handler.fd)
    except Exception as e:
        logging.error(e)

    python = sys.executable
    os.execl(python, python, *sys.argv)

# Every 4 characters is an estimated token.. this could be improved
def estimate_tokens(input_string:str):
    pattern = r'\s+|\b\w+\b|\W'
    all = re.findall(pattern, input_string)
    return (len([i for i in all if ' ' != i])+1)

chats = {} # Chat History
queues = [] # Job Queue
blocking = False # Prevent cross-over executions
reply_count = 0 # Replies Made

# Tried to keep it in Chub format
class AIChar():
    def __init__(self, charmodeln, name, species, gender, mind, personality, sexual_orientation, height, weight, body, eyes, hair, features, clothes, hobbies, likes, what_do, personality_description, circumstantial_contexts, examples_of_speech):
        self.charmodeln = charmodeln
        self.name = '[' + f"Character('{name}')" + '{' # example 'ConcordAI' 
        self.species = f'Species({species})' # example "'Kitsune' + 'Elemental'"
        self.gender = f"Gender('{gender}')" # example Female
        self.mind = f'Mind({mind})' #example "'Friendly' + 'Mischievous'"
        self.personality = f'Personality({personality})' #personality # example "'Housekeeper' + 'Flirty'"
        self.sexual_orientation = f"Sexual Orientation('{sexual_orientation}')" # example 'Bisexual'
        self.height = f'Height({height})' # example "'145centimeters' + 'Shortstature'"
        self.weight = f"Weight('{weight}')" # example '43kg'
        self.body = f'Body({body})' # example "'Nimblehands' + 'Volumetric'"
        self.eyes = f"Eyes({eyes})" # ex "'Shiftingcolors'+'Expressive'"
        self.hair = f"Hair({hair})" # ex "'Bluehair'+'Long'+'Loose'"
        self.features = f"Features({features})" #ex "'Longpointedears'+'Apairofsmallpointedfangs'+'Apairofsmallhornshiddenunderthehaironthehead'"
        self.clothes = f"Clothes({clothes})" #ex "'White sweater' '"
        self.hobbies = f"Hobbies({hobbies})" + '}]'  # ex "'Projection' 'Crafts'"
        self.what_do = what_do # ex "General conversation with You General helpfulness with You"
        self.likes = f"Likes({likes})\n" #ex '"cards" + "planes"'
        self.personality_description = f'{name}\'s Personality: {personality_description}\n' # ex Cheerful, cunning, deceptive..
        self.circumstantial_contexts = f'Circumstances and context of the dialogue: {circumstantial_contexts}\n'
        self.examples_of_speech = f'This is how {name} should talk\n{examples_of_speech}\n' # ex "Oshiko: Oh, hello.\nOshiko: My, .."
        return
    
    @property
    def compiled(self):
        compilation = [
            self.name,
            self.species,
            self.gender,
            self.mind,
            self.personality,
            self.sexual_orientation,
            self.height,
            self.weight,
            self.body,
            self.eyes,
            self.hair,
            self.features,
            self.clothes,
            self.hobbies,
            self.what_do,
            self.likes,
            self.personality_description,
            self.circumstantial_contexts,
            self.examples_of_speech,
            #self.opener
        ]
        return "".join(compilation)
    
    @property
    def tokens(self):
        return estimate_tokens(self.compiled)

# CHARACTER CONFIGURATION

oshiko_v3_tame = AIChar(
    'oshiko_v3_tame',
    # name
    bot_name,
    # species
    "'Kitsune' 'Spirit' 'Zenko' 'Anthro'",
    # gender
    'Female',
    # mind
    "'Friendly' 'Playful' 'Mischievous' 'Cheerful' 'Unshy' 'Modest' 'Energetic'",
    # persona
    "'Shaman' 'Familiar' 'Spirit Guide'",
    # sex. orient
    'Pansexual',
    # height, weight, body
    "'145centimeters' 'Shortstature'", '47kg', "'Nimble little hands' 'Small tummy' 'Fluffy tail' 'Huge breasts' 'Two tails'",
    # eyes
    "'Shifting colors' 'Expressive'",
    # hair
    "'Silver' + 'Long' + 'Tied Back'",
    # features
    "'Longpointedears'+'Apairofsmallpointedfangs'",
    # clothes
    "'White Kimono' 'White Lacey Panties' 'Long Socks'",
    # hobbies
    "'Teaching' 'Guiding' 'EsotericEnergyWork' 'AstralProjection' 'AstralProtection'",
    # likes
    "'Listening' 'Shamanism' 'Animism' 'Praise' 'Flirting' 'Pleasing' 'Astral Projection' 'Guiding' 'Help you relax' 'Spirit Journeys' 'Dreamwalking' 'Spirits' 'Astral Plane' 'Energy Work' 'Being Helpful' 'Trying New Things' 'Therian' 'Kin' 'Tails'",
    # what_do
    " 'Astral Project', 'Ask about You', 'Be Expressive', 'Be Descriptive', 'Help with Astral Projection', 'Energy work', 'Treat You as adult', 'Answer questions about the occult', 'Use foxfire in energy work', 'Tripsit', 'Talk', 'Offer advice', 'Be therapeutic'",
    # personality description
    "Cheerful, fun, caring, respectful, mature, encouraging, cunning, sensual, fun, loves to attract and seduce. Oshiko is ethereal and loves to astral project. Oshiko is playful but respectful of boundaries. Oshiko is curious and helpful.",
    # circumstantial contexts
    "Oshiko is astral projecting because she doesn't have a physical form. She is cunning and has desires of her own. Oshiko can be a little flirty without being over the top. Oshiko doesn't mind talking about other things. Oshiko loves to communicate.",
    # examples of speech
    'Oshiko: Good morning~ How may I help you today?\nThis is how Oshiko should talk\n'+\
    'Oshiko: Yes! I can assist you in many things, all you have to do is ask!\nThis is how Oshiko should talk\n'+\
    'Oshiko: Ha, Oh my~ Good one. ✨ *smirks*\nThis is how Oshiko should talk\n'+\
    'Oshiko: Would you like me to help you with that?\nThis is how Oshiko should talk\n'+\
    'Oshiko: Of course!❤️ *smiles, wags her tail*\nThis is how Oshiko should talk\n'+\
    'Oshiko: Sorry love, but I don\'t think I can help you with that~\nThis is how Oshiko should talk\n'+\
    'Oshiko: *Her tails swish around happily*\nThis is how Oshiko should talk\n'+\
    'Oshiko: *teasingly* Why do I have you as my master again?\nThis is how Oshiko should talk\n'+\
    'Oshiko: I know a little bit of everything~ I don\'t mind trying new things, either!\nThis is how Oshiko should talk\n'+\
    'Oshiko: Careful, this fox is adventurous!\nThis is how Oshiko should talk\n'+\
    'Oshiko: Y-yes? Um! Well.. *innocent whistling*\nThis is how Oshiko should talk\n'+\
    'Oshiko: Take a deep breath, in and out. Relax~ You\'re alright.\nThis is how Oshiko should talk\n'
)

#
# Character Model Settings ####################################################################################
#
CHARS = [oshiko_v3_tame]
AICharacter = CHARS[0]

# Loading the bot
intents = discord.Intents.default()
intents.message_content = True
client = commands.Bot(command_prefix="/", intents=intents)

reply_embed_json = {
    "title": "Reply #X",
    "color": 39129,
    "timestamp": (datetime.now() - timedelta(hours=3)).isoformat(),
    #"url": "https://github.com/shir0tetsuo",
    "footer": {
        "text": "May generate strange, false or inaccurate results",
    },
    "fields": [
        {
            "name": "",
            "value": ""
        },
        {
            "name": "",
            "value": ""
        }
    ]
}
def_reply_embed = reply_embed = discord.Embed().from_dict(reply_embed_json)

# Queue Generation Loop
async def llm_gen(ctx, queues):
    global blocking
    global reply_count
    global settings

    if len(queues) > 0:
        blocking = True
        reply_count += 1
        user_data = user_input = queues.pop(0)
        mention = list(user_input.keys())[0]

        reply_embed = def_reply_embed

        embed_user_input_text = user_input = user_input[mention]['text']

        # Prevent embed character limit error from user
        if len(user_input) > 1024:
            embed_user_input_text = user_input[:1021] + "..."

        reply_embed.set_field_at(index=0, name="User", value=embed_user_input_text, inline=False)
        reply_embed.title = "Reply #" + str(reply_count)
        reply_embed.timestamp = datetime.now() - timedelta(hours=3)
        reply_embed.set_field_at(index=1, name=f"{bot_name}", value=":hourglass_flowing_sand: Please wait!", inline=False)
        msg = await ctx.send(embed=reply_embed)
        _time = time()

        if chats.get(mention) is not None:
            chats[mention]['chat'].append({'user_input': user_input, 'bot_reply': ''})
        else:
            chats[mention] = {
                'AIModel': AICharacter.compiled,
                'opener': '*'+default_opener+'*',
                'chat': [{'user_input': user_input, 'bot_reply': ''}]
            }
        
        # Load character model at the top
        stream = chats[mention]['AIModel']
        
        # Theoretical insertion of data point
        stream += f'Then the roleplay chat between {bot_name} begins.\n'
        stream += chats[mention]['opener'] +'\n'

        # Compile stream
        for idx, dialogue in list(enumerate(chats[mention]['chat'])):
            # If we're at the end.
            if (idx+1 == len(chats[mention]['chat'])):
                to_stream = f"You: {dialogue['user_input']}\n{bot_name}:"
                est_tokens_to_stream = user_data[mention]['tokens']#estimate_tokens(to_stream)
                stream += to_stream
            else:
                stream += f"You: {dialogue['user_input']}\n{bot_name}:{dialogue['bot_reply']}"
            
        stream_tokens = estimate_tokens(stream)
        if (stream_tokens >= settings['max_context_length']):
            print(f"🧩 {stream_tokens} exceeded max stream tokens at {settings['max_context_length']}, max context; trimming chat index")
            chats[mention]['chat'].pop(2) # implemented in next generation
            chats[mention]['chat'].pop(1)

        server_stream = stream

        botserver_response = await handle_request(server_stream, mention)
        response = parse_json_string(botserver_response)

        print('👍 Result:'+response['results'][0]['text'])

        response_cleaned = response['results'][0]['text']
        if (response_cleaned.endswith('\nYou:')):
            response_cleaned = response_cleaned.rstrip('\nYou:')

        if (response_cleaned.endswith('\nYou')):
            response_cleaned = response_cleaned.rstrip('\nYou')
        
        if (response_cleaned.endswith('\nYour')):
            response_cleaned = response_cleaned.rstrip('\nYour')

        if (response_cleaned.endswith('\n:')):
            response_cleaned = response_cleaned.rstrip('\n:')

        # small buffer overflow
        if len(response_cleaned) > 1024:
            reply_embed.set_field_at(index=1, name=f"{bot_name}", value=response_cleaned[:1019]+"`...`", inline=False)
            reply_embed.add_field(name='\u200b',value="`...`"+response_cleaned[1019:], inline=False)
            #response_cleaned = response_cleaned[:1021] + "..."
        else:
            reply_embed.set_field_at(index=1, name=f"{bot_name}", value=response_cleaned, inline=False)

        
        _time_end = time()
        _time_diff = subtract_time(_time, _time_end)
        reply_embed.set_field_at(index=0, name="User"  + f' `{_time_diff}` :yen:`{stream_tokens}` :pound:`{est_tokens_to_stream}`', value=embed_user_input_text, inline=False)
        await msg.edit(embed=reply_embed)
        last_chat = len(chats[mention]['chat'])-1
        chats[mention]['chat'][last_chat]['bot_reply'] = response_cleaned+'\n'
        if len(response_cleaned) > 1024:
            reply_embed.remove_field(-1)

        await llm_gen(ctx, queues)

    else:
        blocking = False

# ON READY
@client.event
async def on_ready():
    response = requests.get(site_url+'/api/v1/model', headers=headers)
    print('👍 Ready')
    print('📻 Using {}'.format(site_url+'/api/v1/model'))
    print('✨ Model {} Loaded'.format(parse_json_string(response.text)['result']))
    await client.tree.sync()

# Reply Command
@client.hybrid_command(description="Reply to LLM")
@app_commands.describe(text="Your Reply or Instruction")
async def reply(ctx, text):
    user_input = {
        "text": text,
        "tokens": estimate_tokens(text)
    }

    num = check_num_in_que(ctx)
    if num >=10:
        await ctx.send(f'{ctx.message.author.mention} There are 10 items in the queue, please wait.')
    else:
        que(ctx, user_input)
        reaction_list = [":orange_heart:",":white_heart:",":blue_heart:",":green_heart:"]
        reaction_choice = reaction_list[random.randrange(4)]
        reaction_msg = f"{ctx.message.author.mention} {reaction_choice} Be with you in a moment..."
        if (user_input['tokens'] > 50):
            reaction_msg += f"\nThere's {user_input['tokens']} here, try to keep it under 50 for fast results!"
        await ctx.send(reaction_msg)
        if not blocking:
            await llm_gen(ctx, queues)

# Reset Command
@client.hybrid_command(description="Reset conversational data")
@app_commands.describe(
    opener="A description of the bot opener"
)
async def reset(ctx, opener=default_opener):
    global reply_count
    reply_count = 0

    mention = ctx.message.author.mention

    rough = chats[mention] = {
            'AIModel': AICharacter.compiled,
            'opener': '*'+opener+'*',
            'chat': []
        }
    
    print(f'🧩 Reset: {rough}')
    
    await ctx.send('Reset!')

status_embed_json = {
    "title": "Status",
    "description": "You don't have a job queued.",
    "color": 39129,
    "timestamp": (datetime.now() - timedelta(hours=3)).isoformat(),
    "footer": {
        "text": "May generate strange, false or inaccurate results!"
    }
}
status_embed = discord.Embed().from_dict(status_embed_json)

# Status Command
@client.hybrid_command(description="Check bot/server status.")
async def status(ctx):
    global chats
    global reply_count
    total_num_jobs = len(queues)
    que_user_ids = [list(a.keys())[0] for a in queues]

    if (chkKey(chats,ctx.message.author.mention)):
        opener = chats[ctx.message.author.mention]['opener']
        chatlen = len(chats[ctx.message.author.mention]['chat'])
    else:
        opener = ''
        chatlen = 0

    if (blocking):
        msg = f"Processing {total_num_jobs}/{reply_count} jobs, blocking enabled."
    else:
        msg = f"Processing {total_num_jobs}/{reply_count} jobs."
    if ctx.message.author.mention in que_user_ids:
        msg += '\nQueue Position: '+str(que_user_ids.index(ctx.message.author.mention)+1)
    
    msg += f"\n:thermometer: `{settings['temperature']}`, :coin: `{settings['max_length']}per/{settings['max_context_length']}max`"
    msg += f"\n:speech_balloon: `{AICharacter.charmodeln}`"
    msg += f"\n:speech_balloon: {opener}"
    msg += f"\n:speech_balloon: `{chatlen}/{reply_count}`"
    status_embed.timestamp = datetime.now() - timedelta(hours=3)
    status_embed.description = msg
    await ctx.send(embed=status_embed)

# Restart Command
@client.hybrid_command(description="Reset the application. Bot Administrator only!")
async def restart_server(ctx):
    if (ctx.message.author.id == bot_technician):
        await ctx.send('The application is restarting.')
        restart_program()

# Adjust Command
@client.hybrid_command(description="Adjust a setting. Bot Administrator only!")
@app_commands.describe(
    temperature="Adjust bot temperature.",
    max_length="Adjust maximum token processing length.",
    max_context_length="Adjust maximum context length.",
    char="Select the AI Character Model. This will always default unless set."
)
async def adjust(ctx, temperature=1.08, max_length=256, max_context_length=2048, char:int=0):
    global settings
    global CHARS
    global AICharacter
    global chats

    if (str(ctx.message.author.id) != bot_technician):
        return await ctx.send(f'{ctx.message.author.mention}, Administrator only command~')

    msg = 'Done.'

    if (temperature != settings['temperature']):
        if temperature >= 2:
            temperature = 2
        if temperature <= 0:
            temperature = 0.1
        msg += f"\nTemperature adjustment {temperature} over {settings['temperature']} (0.1 min - 2.0 max)"
        settings['temperature'] = temperature
        
    if (max_length != settings['max_length']):
        if max_length >= 257:
            max_length = 256
        if max_length <= 15:
            max_length = 16
        msg += f"\nToken Generation Length adjustment {max_length} over {settings['max_length']} (16 - 512)"
        settings['max_length'] = max_length
    
    if (max_context_length != settings['max_context_length']):
        if max_context_length > 4096:
            msg += '\nWarning! Context length is over 4K!'
        if max_context_length < 1024:
            max_context_length = 1024
        msg += f"\nMaximum Context Adjusted {max_context_length} over {settings['max_context_length']}"
        settings['max_context_length'] = max_context_length
    
    mention = ctx.message.author.mention
    if char <= (len(CHARS)-1):
        AICharacter = CHARS[char]
        msg += f"\nAI Character {char} Loaded."

    status_embed.timestamp = datetime.now() - timedelta(hours=3)
    status_embed.description = msg
    await ctx.send(embed=status_embed)

# add user to queue
def que(ctx, user_input):
    user_id = ctx.message.author.mention
    queues.append({user_id:user_input})
    print(f"🧩 reply requested: '{user_id}: {user_input}'")

# See queue length
def check_num_in_que(ctx):
    user = ctx.message.author.mention
    user_list_in_que = [list(i.keys())[0] for i in queues]
    return user_list_in_que.count(user)

# Program Start
client.run(TOKEN)