Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import joblib
|
3 |
+
import numpy as np
|
4 |
+
from tensorflow.keras.preprocessing import image
|
5 |
+
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
|
6 |
+
from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
7 |
+
|
8 |
+
# Load the trained KNN model and class names
|
9 |
+
model = joblib.load('knn_model.joblib')
|
10 |
+
with open('class_names.txt', 'r') as f:
|
11 |
+
class_names = f.readlines()
|
12 |
+
class_names = [x.strip() for x in class_names]
|
13 |
+
|
14 |
+
# Load pre-trained ResNet50 model for feature extraction
|
15 |
+
resnet_model = ResNet50(weights='imagenet', include_top=False, pooling='avg')
|
16 |
+
|
17 |
+
# Streamlit app
|
18 |
+
st.title('Animal Image Classifier')
|
19 |
+
st.write('Upload an image to classify it.')
|
20 |
+
|
21 |
+
# Upload Image
|
22 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
23 |
+
|
24 |
+
if uploaded_file is not None:
|
25 |
+
# Process the image
|
26 |
+
img = load_img(uploaded_file, target_size=(32, 32))
|
27 |
+
img = img_to_array(img)
|
28 |
+
img = np.expand_dims(img, axis=0)
|
29 |
+
img = preprocess_input(img)
|
30 |
+
|
31 |
+
# Extract features
|
32 |
+
features = resnet_model.predict(img)
|
33 |
+
|
34 |
+
# Make prediction
|
35 |
+
prediction = model.predict(features)
|
36 |
+
predicted_class = class_names[prediction[0]]
|
37 |
+
|
38 |
+
# Display result
|
39 |
+
st.image(uploaded_file, caption='Uploaded Image.', use_column_width=True)
|
40 |
+
st.write(f"Predicted Class: {predicted_class}")
|