Spaces:
Sleeping
Sleeping
import streamlit as st | |
from openai import OpenAI | |
import os | |
# AIML API settings | |
aiml_api_key = os.getenv("AIML_API_KEY") # Fetch the API key from environment variables | |
client = OpenAI(api_key=aiml_api_key) | |
# Function to generate sentiment analysis | |
def generate_response(feedback, feedback_source): | |
prompt = f"Analyze the following {feedback_source} feedback and provide the sentiment (positive, negative, neutral) and key phrases: {feedback}" | |
chat_completion = client.chat.completions.create( | |
model="o1-mini", | |
messages=[ | |
{"role": "user", "content": prompt}, | |
], | |
max_tokens=1000, | |
) | |
return chat_completion.choices[0].message.content | |
# Streamlit app layout | |
st.title("Sentiment Analysis Tool") | |
# Category selection (for feedback context) | |
category = st.selectbox("Select your feedback source", ("Product Reviews", "Social Media", "Post-purchase Surveys")) | |
# Input for customer's feedback | |
query = st.text_area("Enter customer feedback for analysis", placeholder="Paste product review or social media comment here...") | |
# Button to trigger sentiment analysis | |
if st.button("Analyze Feedback"): | |
if query: | |
# Generate sentiment and key phrases | |
response = generate_response(query, category) | |
st.write(response) | |
else: | |
st.write("Please enter customer feedback.") | |