Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from openai import OpenAI
|
3 |
+
import os
|
4 |
+
|
5 |
+
# AIML API settings
|
6 |
+
aiml_api_key = os.getenv("AIML_API_KEY") # Fetch the API key from environment variables
|
7 |
+
client = OpenAI(api_key=aiml_api_key)
|
8 |
+
|
9 |
+
# Function to generate sentiment analysis
|
10 |
+
def generate_response(feedback, feedback_source):
|
11 |
+
prompt = f"Analyze the following {feedback_source} feedback and provide the sentiment (positive, negative, neutral) and key phrases: {feedback}"
|
12 |
+
chat_completion = client.chat.completions.create(
|
13 |
+
model="o1-mini",
|
14 |
+
messages=[
|
15 |
+
{"role": "user", "content": prompt},
|
16 |
+
],
|
17 |
+
max_tokens=1000,
|
18 |
+
)
|
19 |
+
return chat_completion.choices[0].message.content
|
20 |
+
|
21 |
+
# Streamlit app layout
|
22 |
+
st.title("Sentiment Analysis Tool")
|
23 |
+
|
24 |
+
# Category selection (for feedback context)
|
25 |
+
category = st.selectbox("Select your feedback source", ("Product Reviews", "Social Media", "Post-purchase Surveys"))
|
26 |
+
|
27 |
+
# Input for customer's feedback
|
28 |
+
query = st.text_area("Enter customer feedback for analysis", placeholder="Paste product review or social media comment here...")
|
29 |
+
|
30 |
+
# Button to trigger sentiment analysis
|
31 |
+
if st.button("Analyze Feedback"):
|
32 |
+
if query:
|
33 |
+
# Generate sentiment and key phrases
|
34 |
+
response = generate_response(query, category)
|
35 |
+
st.write(response)
|
36 |
+
else:
|
37 |
+
st.write("Please enter customer feedback.")
|