import streamlit as st from openai import OpenAI import os # AIML API settings aiml_api_key = os.getenv("AIML_API_KEY") # Fetch the API key from environment variables client = OpenAI(api_key=aiml_api_key) # Function to generate sentiment analysis def generate_response(feedback, feedback_source): prompt = f"Analyze the following {feedback_source} feedback and provide the sentiment (positive, negative, neutral) and key phrases: {feedback}" chat_completion = client.chat.completions.create( model="o1-mini", messages=[ {"role": "user", "content": prompt}, ], max_tokens=1000, ) return chat_completion.choices[0].message.content # Streamlit app layout st.title("Sentiment Analysis Tool") # Category selection (for feedback context) category = st.selectbox("Select your feedback source", ("Product Reviews", "Social Media", "Post-purchase Surveys")) # Input for customer's feedback query = st.text_area("Enter customer feedback for analysis", placeholder="Paste product review or social media comment here...") # Button to trigger sentiment analysis if st.button("Analyze Feedback"): if query: # Generate sentiment and key phrases response = generate_response(query, category) st.write(response) else: st.write("Please enter customer feedback.")