Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
from diffusers import StableDiffusionPipeline
|
4 |
+
import torch
|
5 |
+
import wget
|
6 |
+
|
7 |
+
# Define the device to use (either "cuda" for GPU or "cpu" for CPU)
|
8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
|
10 |
+
# Load the models
|
11 |
+
caption_image = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large", device=device)
|
12 |
+
sd_pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(device)
|
13 |
+
|
14 |
+
# Load the translation model (English to Arabic)
|
15 |
+
translator = pipeline(
|
16 |
+
task="translation",
|
17 |
+
model="facebook/nllb-200-distilled-600M",
|
18 |
+
torch_dtype=torch.bfloat16,
|
19 |
+
device=device
|
20 |
+
)
|
21 |
+
|
22 |
+
# Download the image
|
23 |
+
url1 = "https://github.com/Shahad-b/Image-database/blob/main/sea.jpg?raw=true"
|
24 |
+
sea = wget.download(url1)
|
25 |
+
|
26 |
+
url2 = "https://github.com/Shahad-b/Image-database/blob/main/Cat.jpeg?raw=true"
|
27 |
+
Cat = wget.download(url2)
|
28 |
+
|
29 |
+
url3 = "https://github.com/Shahad-b/Image-database/blob/main/Car.jpeg?raw=true"
|
30 |
+
Car = wget.download(url3)
|
31 |
+
|
32 |
+
# Function to generate images based on the image's caption
|
33 |
+
def generate_image_and_translate(image, num_images=1):
|
34 |
+
# Generate caption in English from the uploaded image
|
35 |
+
caption_en = caption_image(image)[0]['generated_text']
|
36 |
+
|
37 |
+
# Translate the English caption to Arabic
|
38 |
+
caption_ar = translator(caption_en, src_lang="eng_Latn", tgt_lang="arb_Arab")[0]['translation_text']
|
39 |
+
|
40 |
+
generated_images = []
|
41 |
+
|
42 |
+
# Generate the specified number of images based on the English caption
|
43 |
+
for _ in range(num_images):
|
44 |
+
generated_image = sd_pipeline(prompt=caption_en).images[0]
|
45 |
+
generated_images.append(generated_image)
|
46 |
+
|
47 |
+
# Return the generated images along with both captions
|
48 |
+
return generated_images, caption_en, caption_ar
|
49 |
+
|
50 |
+
# Set up the Gradio interface
|
51 |
+
interface = gr.Interface(
|
52 |
+
fn=generate_image_and_translate,
|
53 |
+
inputs=[
|
54 |
+
gr.Image(type="pil", label="Upload Image"),
|
55 |
+
gr.Slider(minimum=1, maximum=10, label="Number of Images", value=1, step=1)
|
56 |
+
],
|
57 |
+
outputs=[
|
58 |
+
gr.Gallery(label="Generated Images"),
|
59 |
+
gr.Textbox(label="Generated Caption (English)", interactive=False),
|
60 |
+
gr.Textbox(label="Translated Caption (Arabic)", interactive=False)
|
61 |
+
],
|
62 |
+
title="Image Generation and Translation",
|
63 |
+
description="Upload an image to generate new images based on its caption and translate the caption into Arabic.",
|
64 |
+
examples=[
|
65 |
+
["sea.jpg", 3],
|
66 |
+
["Cat.jpeg", 4],
|
67 |
+
["Car.jpeg", 2]
|
68 |
+
]
|
69 |
+
)
|
70 |
+
|
71 |
+
# Launch the Gradio application
|
72 |
+
interface.launch()
|