shahad-b commited on
Commit
ee392c6
·
verified ·
1 Parent(s): 6b2b9a1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -17
app.py CHANGED
@@ -8,7 +8,9 @@ import wget
8
  device = "cuda" if torch.cuda.is_available() else "cpu"
9
 
10
  # Load the models
 
11
  caption_image = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large", device=device)
 
12
  sd_pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(device)
13
 
14
  # Load the translation model (English to Arabic)
@@ -19,9 +21,23 @@ translator = pipeline(
19
  device=device
20
  )
21
 
22
- # Download the image
23
- url1 = "https://github.com/Shahad-b/Image-database/blob/main/sea.jpg?raw=true"
24
- sea = wget.download(url1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  # Function to generate images based on the image's caption
27
  def generate_image_and_translate(image, num_images=1):
@@ -43,24 +59,20 @@ def generate_image_and_translate(image, num_images=1):
43
 
44
  # Set up the Gradio interface
45
  interface = gr.Interface(
46
- fn=generate_image_and_translate,
47
  inputs=[
48
- gr.Image(type="pil", label="Upload Image"),
49
- gr.Slider(minimum=1, maximum=10, label="Number of Images", value=1, step=1)
50
  ],
51
  outputs=[
52
- gr.Gallery(label="Generated Images"),
53
- gr.Textbox(label="Generated Caption (English)", interactive=False),
54
- gr.Textbox(label="Translated Caption (Arabic)", interactive=False)
55
  ],
56
- title="Image Generation and Translation",
57
- description="Upload an image to generate new images based on its caption and translate the caption into Arabic.",
58
- examples=[
59
- ["sea.jpg", 3]
60
- ]
61
  )
62
 
63
  # Launch the Gradio application
64
- interface.launch()
65
- if __name__ == "__main__":
66
- app.run(host="0.0.0.0", port=7860)
 
8
  device = "cuda" if torch.cuda.is_available() else "cpu"
9
 
10
  # Load the models
11
+ # Image captioning model to generate captions from uploaded images
12
  caption_image = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large", device=device)
13
+ # Stable Diffusion model for generating new images based on captions
14
  sd_pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(device)
15
 
16
  # Load the translation model (English to Arabic)
 
21
  device=device
22
  )
23
 
24
+ # Function to generate images based on the image's caption
25
+ def generate_image_and_translate(image, num_images=1):
26
+ # Generate caption in English from the uploaded image
27
+ caption_en = caption_image(image)[0]['generated_text']
28
+
29
+ # Translate the English caption to Arabic
30
+ caption_ar = translator(caption_en, src_lang="eng_Latn", tgt_lang="arb_Arab")[0]['translation_text']
31
+
32
+ generated_images = []
33
+
34
+ # Generate the specified number of images based on the English caption
35
+ for _ in range(num_images):
36
+ generated_image = sd_pipeline(prompt=caption_en).images[0]
37
+ generated_images.append(generated_image)
38
+
39
+ # Return the generated images along with both captions
40
+ return generated_images, caption_en, caption_ar
41
 
42
  # Function to generate images based on the image's caption
43
  def generate_image_and_translate(image, num_images=1):
 
59
 
60
  # Set up the Gradio interface
61
  interface = gr.Interface(
62
+ fn=generate_image_and_translate, # Function to call when processing input
63
  inputs=[
64
+ gr.Image(type="pil", label="📤 Upload Image"), # Input for image upload
65
+ gr.Slider(minimum=1, maximum=10, label="🔢 Number of Images", value=1, step=1) # Slider to select number of images
66
  ],
67
  outputs=[
68
+ gr.Gallery(label="🖼️ Generated Images"),
69
+ gr.Textbox(label="📝 Generated Caption (English)", interactive=False),
70
+ gr.Textbox(label="🌍 Translated Caption (Arabic)", interactive=False)
71
  ],
72
+ title="Image Generation and Captioning", # Title of the interface
73
+ description="Upload an image to extract a caption and display it in both Arabic and English. Then, a new image will be generated based on that caption.", # Description
74
+ theme='freddyaboulton/dracula_revamped' # Determine theme
 
 
75
  )
76
 
77
  # Launch the Gradio application
78
+ interface.launch()