Spaces:
Runtime error
Runtime error
Commit
·
50cf541
1
Parent(s):
ec3d253
Update app.py
Browse files
app.py
CHANGED
@@ -2,23 +2,22 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
-
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
# load speech translation checkpoint
|
12 |
-
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
|
16 |
-
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
|
18 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
19 |
-
|
20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[
|
|
|
|
|
22 |
|
23 |
replacements = [
|
24 |
("à", "a"),
|
@@ -48,7 +47,6 @@ def synthesise(text):
|
|
48 |
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
49 |
return speech.cpu()
|
50 |
|
51 |
-
|
52 |
def speech_to_speech_translation(audio):
|
53 |
translated_text = translate(audio)
|
54 |
synthesised_speech = synthesise(translated_text)
|
@@ -58,9 +56,8 @@ def speech_to_speech_translation(audio):
|
|
58 |
|
59 |
title = "Cascaded STST"
|
60 |
description = """
|
61 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in
|
62 |
-
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
63 |
-
|
64 |

|
65 |
"""
|
66 |
|
@@ -78,7 +75,7 @@ file_translate = gr.Interface(
|
|
78 |
fn=speech_to_speech_translation,
|
79 |
inputs=gr.Audio(source="upload", type="filepath"),
|
80 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
81 |
-
examples=[["
|
82 |
title=title,
|
83 |
description=description,
|
84 |
)
|
|
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
|
|
5 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
6 |
|
7 |
|
8 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
9 |
|
10 |
# load speech translation checkpoint
|
11 |
+
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2", device=device)
|
12 |
|
13 |
# load text-to-speech checkpoint and speaker embeddings
|
14 |
+
model_id = "sanchit-gandhi/speecht5_tts_vox_nl" # update with your model id
|
15 |
+
model = SpeechT5ForTextToSpeech.from_pretrained(model_id)
|
|
|
16 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
|
|
17 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
18 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0)
|
19 |
+
|
20 |
+
processor = SpeechT5Processor.from_pretrained(model_id)
|
21 |
|
22 |
replacements = [
|
23 |
("à", "a"),
|
|
|
47 |
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
48 |
return speech.cpu()
|
49 |
|
|
|
50 |
def speech_to_speech_translation(audio):
|
51 |
translated_text = translate(audio)
|
52 |
synthesised_speech = synthesise(translated_text)
|
|
|
56 |
|
57 |
title = "Cascaded STST"
|
58 |
description = """
|
59 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in French. Demo uses OpenAI's [Whisper Large v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and [ckandemir/speecht5_finetuned_voxpopuli_fr"](https://huggingface.co/ckandemir/speecht5_finetuned_voxpopuli_fr) checkpoint for text-to-speech, which is based on Microsoft's
|
60 |
+
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech, fine-tuned in French Audio dataset:
|
|
|
61 |

|
62 |
"""
|
63 |
|
|
|
75 |
fn=speech_to_speech_translation,
|
76 |
inputs=gr.Audio(source="upload", type="filepath"),
|
77 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
78 |
+
examples=[["/content/example.wav"]],
|
79 |
title=title,
|
80 |
description=description,
|
81 |
)
|