Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from transformers import pipeline
|
4 |
+
import torch
|
5 |
+
from PyPDF2 import PdfReader
|
6 |
+
|
7 |
+
# Disable tokenizers parallelism
|
8 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
9 |
+
|
10 |
+
# Setup for the model
|
11 |
+
device = 0 if torch.cuda.is_available() else -1
|
12 |
+
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=device)
|
13 |
+
|
14 |
+
def split_text(text, max_chunk_size=512):
|
15 |
+
words = text.split()
|
16 |
+
for i in range(0, len(words), max_chunk_size):
|
17 |
+
yield " ".join(words[i:i + max_chunk_size])
|
18 |
+
|
19 |
+
def extract_text_from_pdf(pdf_file):
|
20 |
+
reader = PdfReader(pdf_file)
|
21 |
+
text = ""
|
22 |
+
for page_num in range(len(reader.pages)):
|
23 |
+
page = reader.pages[page_num]
|
24 |
+
text += page.extract_text()
|
25 |
+
return text
|
26 |
+
|
27 |
+
def summarize_text(text, summarizer):
|
28 |
+
chunks = list(split_text(text))
|
29 |
+
summaries = []
|
30 |
+
for chunk in chunks:
|
31 |
+
input_length = len(chunk.split())
|
32 |
+
max_summary_length = max(10, int(input_length * 0.6))
|
33 |
+
min_summary_length = max(5, int(input_length * 0.2))
|
34 |
+
result = summarizer(chunk, max_length=max_summary_length, min_length=min_summary_length, do_sample=False)
|
35 |
+
summaries.append(result[0]['summary_text'])
|
36 |
+
return " ".join(summaries)
|
37 |
+
|
38 |
+
def extract_and_summarize_page_by_page(pdf_file, summarizer):
|
39 |
+
reader = PdfReader(pdf_file)
|
40 |
+
summaries = []
|
41 |
+
for page_num in range(len(reader.pages)):
|
42 |
+
page = reader.pages[page_num]
|
43 |
+
text = page.extract_text()
|
44 |
+
if text:
|
45 |
+
page_summary = summarize_text(text, summarizer)
|
46 |
+
summaries.append(page_summary)
|
47 |
+
else:
|
48 |
+
summaries.append(f"Page {page_num + 1}: No extractable text found.")
|
49 |
+
return summaries
|
50 |
+
|
51 |
+
# Streamlit interface
|
52 |
+
st.subheader("Generate PDF Summary")
|
53 |
+
pdf_file = st.file_uploader("Upload a PDF", type=["pdf"])
|
54 |
+
|
55 |
+
if pdf_file:
|
56 |
+
text = extract_text_from_pdf(pdf_file)
|
57 |
+
if len(text) > 0:
|
58 |
+
summaries = extract_and_summarize_page_by_page(pdf_file, summarizer)
|
59 |
+
st.subheader("Summary")
|
60 |
+
for i, summary in enumerate(summaries, 1):
|
61 |
+
st.write(f"### Page {i}\n{summary}\n")
|
62 |
+
else:
|
63 |
+
st.warning("No extractable text found in the PDF.")
|