import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "deepseek-ai/DeepSeek-V3" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True, device_map="auto", quantization_config=None ) def chat_with_deepseek(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate( inputs["input_ids"], max_length=512, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response with gr.Blocks() as demo: gr.Markdown("# DeepSeek Chatbot") user_input = gr.Textbox(label="Enter your message") chatbot_output = gr.Textbox(label="Response") submit_btn = gr.Button("Send") submit_btn.click(chat_with_deepseek, inputs=user_input, outputs=chatbot_output) demo.launch()