import streamlit as st from task_operations import TaskManager from task_visualization import TaskVisualizer from llm_part import get_task_advice # Import the LLM advice function import pandas as pd from datetime import datetime def main(): st.title("Daily Task Tracker") task_manager = TaskManager() visualizer = TaskVisualizer() # Ensure tasks are loaded from the database into session state if 'tasks' not in st.session_state: st.session_state.tasks = task_manager.load_tasks() # Task input fields task_name = st.text_input("Task Name") task_time = st.time_input("Task Time") task_duration_hours = st.number_input("Task Duration (Hours)", min_value=0, step=1, format="%d") task_duration_minutes = st.number_input("Task Duration (Minutes)", min_value=0, max_value=59, step=1, format="%d") task_category = st.selectbox("Task Category", TaskManager.CATEGORIES) # Create a button to add the task if st.button("Add Task"): # Add the task to the task manager task_manager.add_task(task_name, task_time, task_duration_hours, task_duration_minutes, task_category) st.success(f"Task '{task_name}' added!") # Get advice from both LLMs advice_gemini, advice_llama = get_task_advice(task_name, task_category, task_duration_hours, task_duration_minutes) # Store the responses in session state st.session_state.advice_gemini = advice_gemini st.session_state.advice_llama = advice_llama # Create tabs for LLM advice display tab1, tab2 = st.tabs(["Gemini LLM", "Llama LLM"]) with tab1: st.header("Gemini LLM") st.write("**Gemini Advice:**") st.write(st.session_state.advice_gemini) with tab2: st.header("Llama LLM") st.write("**Llama Advice:**") st.write(st.session_state.advice_llama) # Display tasks for today only if st.session_state.tasks: st.write("Today's Tasks:") # Convert session tasks to DataFrame and filter tasks for today df = pd.DataFrame(st.session_state.tasks) df['Task Time'] = pd.to_datetime(df['Task Time']) today_tasks = df[df['Task Time'].dt.date == datetime.today().date()] if not today_tasks.empty: st.table(today_tasks[['Task ID', 'Task Name', 'Task Time', 'Task Duration (hours)', 'Task Duration (minutes)', 'Category']]) else: st.write("No tasks for today.") # Task deletion option by ID task_id_to_delete = st.number_input("Enter Task ID to Delete", min_value=0, step=1) if st.button("Delete Task by ID"): if task_manager.delete_task_by_id(task_id_to_delete): st.success(f"Task with ID '{task_id_to_delete}' deleted!") else: st.error(f"Task with ID '{task_id_to_delete}' not found.") # Report options and other visualizations remain unchanged if st.button("Daily Report"): report = task_manager.generate_report('daily') if not report.empty: st.write("Daily Report:") st.dataframe(report) visualizer.plot_category_performance('daily', task_manager) else: st.warning("No tasks for today.") if st.button("Weekly Report"): report = task_manager.generate_report('weekly') if not report.empty: st.write("Weekly Report:") st.dataframe(report) visualizer.plot_category_performance('weekly', task_manager) else: st.warning("No tasks for this week.") if st.button("Monthly Report"): report = task_manager.generate_report('monthly') if not report.empty: st.write("Monthly Report:") st.dataframe(report) visualizer.plot_category_performance('monthly', task_manager) else: st.warning("No tasks for this month.") if st.button("Yearly Report"): report = task_manager.generate_report('yearly') if not report.empty: st.write("Yearly Report:") st.dataframe(report) visualizer.plot_category_performance('yearly', task_manager) else: st.warning("No tasks for this year.") # Performance visualizations visualizer.plot_performance() visualizer.plot_overall_category_performance() # Option to download the report visualizer.download_report() if __name__ == "__main__": main()