Spaces:
Sleeping
Sleeping
# components/task_operations.py | |
import pandas as pd | |
import os | |
from datetime import datetime | |
import streamlit as st | |
class TaskManager: | |
TASKS_FILE = "tasks.csv" | |
CATEGORIES = ['Learning', 'Gym', 'Personal', 'Family', 'Work', 'Prayer'] | |
def __init__(self): | |
if 'tasks' not in st.session_state: | |
st.session_state.tasks = self.load_tasks() | |
def load_tasks(self): | |
if os.path.exists(self.TASKS_FILE): | |
if os.path.getsize(self.TASKS_FILE) > 0: | |
return pd.read_csv(self.TASKS_FILE, parse_dates=['Task Time']).to_dict(orient='records') | |
else: | |
return [] | |
else: | |
df = pd.DataFrame(columns=["Task Name", "Task Time", "Task Duration (hours)", "Task Duration (minutes)", "Category"]) | |
df.to_csv(self.TASKS_FILE, index=False) | |
return [] | |
def save_tasks(self, tasks): | |
df = pd.DataFrame(tasks) | |
df.to_csv(self.TASKS_FILE, index=False) | |
def add_task(self, task_name, task_time, task_duration_hours, task_duration_minutes, task_category): | |
task_time_full = datetime.combine(datetime.today(), task_time) | |
task_entry = { | |
"Task Name": task_name, | |
"Task Time": task_time_full, | |
"Task Duration (hours)": int(task_duration_hours), | |
"Task Duration (minutes)": int(task_duration_minutes), | |
"Category": task_category | |
} | |
st.session_state.tasks.append(task_entry) | |
self.save_tasks(st.session_state.tasks) | |
def delete_task_by_name(self, task_name): | |
for index, task in enumerate(st.session_state.tasks): | |
if task['Task Name'] == task_name: | |
st.session_state.tasks.pop(index) | |
self.save_tasks(st.session_state.tasks) | |
return True | |
return False | |
def generate_report(self, timeframe): | |
df = pd.DataFrame(st.session_state.tasks) | |
if df.empty: | |
return pd.DataFrame() # Return empty DataFrame if no tasks are present | |
# Ensure the 'Task Time' is in datetime format | |
df['Task Time'] = pd.to_datetime(df['Task Time']) | |
if timeframe == 'daily': | |
report = df[df['Task Time'].dt.date == pd.Timestamp.today().date()] | |
elif timeframe == 'weekly': | |
week_start = pd.Timestamp.today() - pd.DateOffset(days=pd.Timestamp.today().dayofweek) | |
report = df[(df['Task Time'] >= week_start) & (df['Task Time'] < pd.Timestamp.today() + pd.DateOffset(days=1))] | |
elif timeframe == 'monthly': | |
report = df[df['Task Time'].dt.month == pd.Timestamp.today().month] | |
elif timeframe == 'yearly': | |
report = df[df['Task Time'].dt.year == pd.Timestamp.today().year] | |
else: | |
report = pd.DataFrame() # Empty DataFrame for unsupported timeframes | |
report['Total Duration'] = report['Task Duration (hours)'] + report['Task Duration (minutes)'] / 60.0 | |
return report | |