jdt / task_operations.py
shamimjony1000's picture
Update task_operations.py
93a0f5c verified
raw
history blame
3.82 kB
import streamlit as st
import pandas as pd
from datetime import datetime
import os
class TaskManager:
TASKS_FILE = "tasks.csv"
CATEGORIES = ['Learning', 'Gym', 'Personal', 'Family', 'Work', 'Prayer']
def __init__(self):
self.local_timezone = 'Asia/Dhaka' # GMT+6
if 'tasks' not in st.session_state:
st.session_state.tasks = self.load_tasks()
def load_tasks(self):
if os.path.exists(self.TASKS_FILE):
if os.path.getsize(self.TASKS_FILE) > 0:
tasks = pd.read_csv(self.TASKS_FILE, parse_dates=['Task Time']).to_dict(orient='records')
# Ensure timezone-awareness when loading tasks
for task in tasks:
task['Task Time'] = pd.Timestamp(task['Task Time']).tz_localize('UTC').tz_convert(self.local_timezone)
return tasks
else:
return []
else:
df = pd.DataFrame(columns=["Task Name", "Task Time", "Task Duration (hours)", "Task Duration (minutes)", "Category"])
df.to_csv(self.TASKS_FILE, index=False)
return []
def save_tasks(self, tasks):
df = pd.DataFrame(tasks)
df['Task Time'] = df['Task Time'].apply(lambda x: x.tz_convert('UTC'))
df.to_csv(self.TASKS_FILE, index=False)
def add_task(self, task_name, task_time, task_duration_hours, task_duration_minutes, task_category):
task_time_full = datetime.combine(datetime.today(), task_time).astimezone(self.local_timezone)
task_entry = {
"Task Name": task_name,
"Task Time": task_time_full,
"Task Duration (hours)": int(task_duration_hours),
"Task Duration (minutes)": int(task_duration_minutes),
"Category": task_category
}
st.session_state.tasks.append(task_entry)
self.save_tasks(st.session_state.tasks)
def delete_task_by_name(self, task_name):
for index, task in enumerate(st.session_state.tasks):
if task['Task Name'] == task_name:
st.session_state.tasks.pop(index)
self.save_tasks(st.session_state.tasks)
return True
return False
def generate_report(self, timeframe):
df = pd.DataFrame(st.session_state.tasks)
if df.empty:
return pd.DataFrame() # Return empty DataFrame if no tasks are present
# Ensure 'Task Time' is already timezone-aware and convert it to local time for the report
df['Task Time'] = pd.to_datetime(df['Task Time']).apply(lambda x: x.tz_convert(self.local_timezone))
today = pd.Timestamp.now(tz=self.local_timezone).date()
if timeframe == 'daily':
report = df[df['Task Time'].dt.date == today]
elif timeframe == 'weekly':
week_start = pd.Timestamp.now(tz=self.local_timezone) - pd.DateOffset(days=pd.Timestamp.now(tz=self.local_timezone).dayofweek)
report = df[(df['Task Time'] >= week_start) & (df['Task Time'] < pd.Timestamp.now(tz=self.local_timezone) + pd.DateOffset(days=1))]
elif timeframe == 'monthly':
report = df[df['Task Time'].dt.month == pd.Timestamp.now(tz=self.local_timezone).month]
elif timeframe == 'yearly':
report = df[df['Task Time'].dt.year == pd.Timestamp.now(tz=self.local_timezone).year]
else:
report = pd.DataFrame() # Empty DataFrame for unsupported timeframes
report['Total Duration'] = report['Task Duration (hours)'] + report['Task Duration (minutes)'] / 60.0
return report
def download_report(self):
df = pd.DataFrame(st.session_state.tasks)
csv = df.to_csv(index=False)
st.download_button("Download CSV", data=csv, file_name="task_report.csv", mime='text/csv')