Spaces:
Sleeping
Sleeping
import matplotlib.pyplot as plt | |
import pandas as pd | |
import streamlit as st | |
class TaskVisualizer: | |
def plot_performance(self): | |
df = pd.DataFrame(st.session_state.tasks) | |
df['Total Duration'] = df['Task Duration (hours)'] + df['Task Duration (minutes)'] / 60.0 | |
plt.figure(figsize=(10, 5)) | |
task_times = df.groupby('Task Name')['Total Duration'].sum() | |
task_times.plot(kind='bar') | |
plt.xlabel('Task') | |
plt.ylabel('Hours Spent') | |
plt.title('Overall Task Performance') | |
plt.xticks(rotation=45) | |
plt.tight_layout() | |
st.pyplot(plt) | |
def plot_category_performance(self, timeframe, task_manager): | |
report = task_manager.generate_report(timeframe) | |
if not report.empty: | |
category_times = report.groupby('Category')['Total Duration'].sum() | |
plt.figure(figsize=(10, 5)) | |
category_times.plot(kind='bar', color='skyblue') | |
plt.xlabel('Category') | |
plt.ylabel('Total Hours Spent') | |
plt.title(f'Task Performance by Category - {timeframe.capitalize()} Report') | |
plt.xticks(rotation=45) | |
plt.tight_layout() | |
st.pyplot(plt) | |
def plot_overall_category_performance(self): | |
df = pd.DataFrame(st.session_state.tasks) | |
df['Total Duration'] = df['Task Duration (hours)'] + df['Task Duration (minutes)'] / 60.0 | |
category_times = df.groupby('Category')['Total Duration'].sum() | |
plt.figure(figsize=(10, 5)) | |
category_times.plot(kind='bar', color='lightgreen') | |
plt.xlabel('Category') | |
plt.ylabel('Total Hours Spent') | |
plt.title('Overall Task Performance by Category') | |
plt.xticks(rotation=45) | |
plt.tight_layout() | |
st.pyplot(plt) | |
def download_report(self): | |
df = pd.DataFrame(st.session_state.tasks) | |
csv = df.to_csv(index=False) | |
st.download_button("Download CSV", data=csv, file_name="task_report.csv", mime='text/csv') | |