Spaces:
Sleeping
Sleeping
Update task_operations.py
Browse files- task_operations.py +40 -47
task_operations.py
CHANGED
@@ -1,70 +1,63 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
-
from datetime import datetime
|
4 |
import pytz
|
5 |
-
import os
|
6 |
|
7 |
class TaskManager:
|
8 |
-
TASKS_FILE = "tasks.csv"
|
9 |
-
CATEGORIES = ['Learning', 'Gym', 'Personal', 'Family', 'Work', 'Prayer']
|
10 |
-
local_timezone = "Asia/Dhaka" # GMT+6
|
11 |
-
|
12 |
def __init__(self):
|
|
|
|
|
13 |
if 'tasks' not in st.session_state:
|
14 |
st.session_state.tasks = self.load_tasks()
|
15 |
|
16 |
def load_tasks(self):
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
else:
|
23 |
-
df = pd.DataFrame(columns=["Task Name", "Task Time", "Task Duration (hours)", "Task Duration (minutes)", "Category"])
|
24 |
-
df.to_csv(self.TASKS_FILE, index=False)
|
25 |
-
return []
|
26 |
-
|
27 |
-
def save_tasks(self, tasks):
|
28 |
df = pd.DataFrame(tasks)
|
29 |
-
df.
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
def add_task(self, task_name, task_time, task_duration_hours, task_duration_minutes, task_category):
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
}
|
41 |
-
st.session_state.tasks.append(
|
42 |
self.save_tasks(st.session_state.tasks)
|
43 |
|
44 |
-
def
|
45 |
-
|
46 |
-
if task['Task Name'] == task_name:
|
47 |
-
st.session_state.tasks.pop(index)
|
48 |
-
self.save_tasks(st.session_state.tasks)
|
49 |
-
return True
|
50 |
-
return False
|
51 |
|
52 |
def generate_report(self, timeframe):
|
53 |
df = pd.DataFrame(st.session_state.tasks)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
if timeframe == 'daily':
|
55 |
-
|
56 |
elif timeframe == 'weekly':
|
57 |
-
|
58 |
-
|
59 |
elif timeframe == 'monthly':
|
60 |
-
|
61 |
elif timeframe == 'yearly':
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
return report
|
66 |
-
|
67 |
-
def download_report(self):
|
68 |
-
df = pd.DataFrame(st.session_state.tasks)
|
69 |
-
csv = df.to_csv(index=False)
|
70 |
-
st.download_button("Download CSV", data=csv, file_name="task_report.csv", mime='text/csv')
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
from datetime import datetime, time, timedelta
|
4 |
import pytz
|
|
|
5 |
|
6 |
class TaskManager:
|
|
|
|
|
|
|
|
|
7 |
def __init__(self):
|
8 |
+
self.utc_timezone = pytz.utc
|
9 |
+
self.local_timezone = pytz.timezone('Asia/Dhaka') # GMT+6 for your timezone
|
10 |
if 'tasks' not in st.session_state:
|
11 |
st.session_state.tasks = self.load_tasks()
|
12 |
|
13 |
def load_tasks(self):
|
14 |
+
# Assuming tasks are stored as a list of dictionaries
|
15 |
+
tasks = st.session_state.get('tasks', [])
|
16 |
+
if not tasks:
|
17 |
+
return pd.DataFrame()
|
18 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
df = pd.DataFrame(tasks)
|
20 |
+
df['Task Time'] = pd.to_datetime(df['Task Time'])
|
21 |
+
|
22 |
+
# Convert timezone if the timestamps are already timezone-aware
|
23 |
+
df['Task Time'] = df['Task Time'].dt.tz_convert(self.local_timezone)
|
24 |
+
|
25 |
+
return df
|
26 |
|
27 |
def add_task(self, task_name, task_time, task_duration_hours, task_duration_minutes, task_category):
|
28 |
+
task_time_full = datetime.combine(datetime.today(), task_time).replace(tzinfo=self.local_timezone)
|
29 |
+
task_duration = timedelta(hours=task_duration_hours, minutes=task_duration_minutes)
|
30 |
+
task = {
|
31 |
+
'Task Name': task_name,
|
32 |
+
'Task Time': task_time_full,
|
33 |
+
'Task Duration (hours)': task_duration_hours,
|
34 |
+
'Task Duration (minutes)': task_duration_minutes,
|
35 |
+
'Task Category': task_category,
|
36 |
}
|
37 |
+
st.session_state.tasks.append(task)
|
38 |
self.save_tasks(st.session_state.tasks)
|
39 |
|
40 |
+
def save_tasks(self, tasks):
|
41 |
+
st.session_state.tasks = tasks
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def generate_report(self, timeframe):
|
44 |
df = pd.DataFrame(st.session_state.tasks)
|
45 |
+
if df.empty:
|
46 |
+
return pd.DataFrame()
|
47 |
+
|
48 |
+
df['Task Time'] = pd.to_datetime(df['Task Time']).dt.tz_convert(self.local_timezone)
|
49 |
+
df['Total Duration'] = df['Task Duration (hours)'] + df['Task Duration (minutes)'] / 60.0
|
50 |
+
|
51 |
+
# Filter based on the timeframe
|
52 |
+
today = datetime.now(self.local_timezone).date()
|
53 |
if timeframe == 'daily':
|
54 |
+
df = df[df['Task Time'].dt.date == today]
|
55 |
elif timeframe == 'weekly':
|
56 |
+
start_of_week = today - timedelta(days=today.weekday())
|
57 |
+
df = df[(df['Task Time'].dt.date >= start_of_week) & (df['Task Time'].dt.date <= today)]
|
58 |
elif timeframe == 'monthly':
|
59 |
+
df = df[df['Task Time'].dt.month == today.month]
|
60 |
elif timeframe == 'yearly':
|
61 |
+
df = df[df['Task Time'].dt.year == today.year]
|
62 |
+
|
63 |
+
return df
|
|
|
|
|
|
|
|
|
|
|
|