import streamlit as st import pandas as pd import matplotlib.pyplot as plt from task_operations import TaskManager # Import TaskManager class TaskVisualizer: def plot_performance(self): df = pd.DataFrame(st.session_state.tasks) df['Total Duration'] = df['Task Duration (hours)'] + df['Task Duration (minutes)'] / 60.0 plt.figure(figsize=(10, 5)) task_times = df.groupby('Task Name')['Total Duration'].sum() task_times.plot(kind='bar') plt.xlabel('Task') plt.ylabel('Hours Spent') plt.title('Overall Task Performance') plt.xticks(rotation=45) plt.tight_layout() st.pyplot(plt) def plot_category_performance(self, timeframe): task_manager = TaskManager() # Use the imported TaskManager class report = task_manager.generate_report(timeframe) if not report.empty: category_times = report.groupby('Category')['Total Duration'].sum() plt.figure(figsize=(10, 5)) category_times.plot(kind='bar', color='skyblue') plt.xlabel('Category') plt.ylabel('Total Hours Spent') plt.title(f'Task Performance by Category - {timeframe.capitalize()} Report') plt.xticks(rotation=45) plt.tight_layout() st.pyplot(plt) def plot_overall_category_performance(self): df = pd.DataFrame(st.session_state.tasks) df['Total Duration'] = df['Task Duration (hours)'] + df['Task Duration (minutes)'] / 60.0 category_times = df.groupby('Category')['Total Duration'].sum() plt.figure(figsize=(10, 5)) category_times.plot(kind='bar', color='lightgreen') plt.xlabel('Category') plt.ylabel('Total Hours Spent') plt.title('Overall Task Performance by Category') plt.xticks(rotation=45) plt.tight_layout() st.pyplot(plt)