k_stone / app.py
shamimjony1000's picture
Update app.py
1a4be85 verified
import gradio as gr
import cv2
import os
from ultralytics import YOLO
# Remove the URLs containing 'mp4'
file_urls = [
'Cyst.jpg',
'Stone.jpg'
]
# Do not download files from URLs, use local files directly
model = YOLO('best.pt')
path = [['Cyst.jpg'], ['Stone.jpg'],['Normal.jpg']]
def detect_objects_on_image(image_path):
image = cv2.imread(image_path)
model = YOLO("best.pt")
results = model.predict(image_path)
result = results[0]
output = []
for box in result.boxes:
x1, y1, x2, y2 = [round(x) for x in box.xyxy[0].tolist()]
class_id = box.cls[0].item()
prob = round(box.conf[0].item(), 2)
output.append([x1, y1, x2, y2, result.names[class_id], prob])
cv2.rectangle(
image,
(x1, y1),
(x2, y2),
color=(0, 0, 255),
thickness=2,
lineType=cv2.LINE_AA
)
# Change font and size
font = cv2.FONT_HERSHEY_SIMPLEX
font_size = 0.5 # Adjust the font size as needed
cv2.putText(image, result.names[class_id], (x1, y1), font, font_size, (36, 255, 12), 1)
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
inputs_image = [
gr.components.Image(type="filepath", label="Input Image"),
]
outputs_image = [
gr.components.Image(type="numpy", label="Output Image"),
]
interface_image = gr.Interface(
fn=detect_objects_on_image,
inputs=inputs_image,
outputs=outputs_image,
title="Kidney Stone and Cyst detection",
examples=path,
cache_examples=False,
)
'''
def show_preds_video(video_path):
cap = cv2.VideoCapture(video_path)
while(cap.isOpened()):
ret, frame = cap.read()
if ret:
frame_copy = frame.copy()
outputs = model.predict(source=frame)
results = outputs[0].cpu().numpy()
for i, det in enumerate(results.boxes.xyxy):
cv2.rectangle(
frame_copy,
(int(det[0]), int(det[1])),
(int(det[2]), int(det[3])),
color=(0, 0, 255),
thickness=2,
lineType=cv2.LINE_AA
)
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
'''
gr.TabbedInterface(
[interface_image],
tab_names=['Shamim MD Jony']
).launch(share=True)