import gradio as gr import cv2 import os from ultralytics import YOLO # Remove the URLs containing 'mp4' file_urls = [ 'Cyst.jpg', 'Stone.jpg' ] # Do not download files from URLs, use local files directly model = YOLO('best.pt') path = [['Cyst.jpg'], ['Stone.jpg'],['Normal.jpg']] def detect_objects_on_image(image_path): image = cv2.imread(image_path) model = YOLO("best.pt") results = model.predict(image_path) result = results[0] output = [] for box in result.boxes: x1, y1, x2, y2 = [round(x) for x in box.xyxy[0].tolist()] class_id = box.cls[0].item() prob = round(box.conf[0].item(), 2) output.append([x1, y1, x2, y2, result.names[class_id], prob]) cv2.rectangle( image, (x1, y1), (x2, y2), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA ) # Change font and size font = cv2.FONT_HERSHEY_SIMPLEX font_size = 0.5 # Adjust the font size as needed cv2.putText(image, result.names[class_id], (x1, y1), font, font_size, (36, 255, 12), 1) return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) inputs_image = [ gr.components.Image(type="filepath", label="Input Image"), ] outputs_image = [ gr.components.Image(type="numpy", label="Output Image"), ] interface_image = gr.Interface( fn=detect_objects_on_image, inputs=inputs_image, outputs=outputs_image, title="Kidney Stone and Cyst detection", examples=path, cache_examples=False, ) ''' def show_preds_video(video_path): cap = cv2.VideoCapture(video_path) while(cap.isOpened()): ret, frame = cap.read() if ret: frame_copy = frame.copy() outputs = model.predict(source=frame) results = outputs[0].cpu().numpy() for i, det in enumerate(results.boxes.xyxy): cv2.rectangle( frame_copy, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA ) yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) ''' gr.TabbedInterface( [interface_image], tab_names=['Shamim MD Jony'] ).launch(share=True)