File size: 6,866 Bytes
c82da72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import gradio as gr
import pandas as pd
from database import Database
from voice_handler import VoiceHandler
from gemini_processor import GeminiProcessor
from memory_handler import MemoryHandler
from gtts import gTTS
import io
import os
from dotenv import load_dotenv

load_dotenv()

# Initialize components
db = Database()
voice_handler = VoiceHandler()
gemini_processor = GeminiProcessor()
memory_handler = MemoryHandler()

def validate_request(project_number, project_name, amount, reason):
    if not project_number or not project_name or not amount or not reason:
        missing_fields = []
        if not project_number: missing_fields.append("project number")
        if not project_name: missing_fields.append("project name")
        if not amount: missing_fields.append("amount")
        if not reason: missing_fields.append("reason")
        return False, f"Please provide: {', '.join(missing_fields)}"
    return True, ""

def process_text_input(text, language):
    if not text:
        return "Please enter some text first.", None, None, None, None
    
    context = memory_handler.get_context()
    details = gemini_processor.extract_request_details(text, context)
    
    if not details:
        return "Could not extract request details. Please try again.", None, None, None, None
    
    memory_handler.add_interaction(text, details)
    
    # Get any previously captured information
    partial_info = memory_handler.get_partial_info()
    
    return (
        f"Text processed! {memory_handler.get_prompt_for_missing_info()}",
        partial_info.get('project_number', ''),
        partial_info.get('project_name', ''),
        partial_info.get('amount', 0),
        partial_info.get('reason', '')
    )

def process_voice_input(audio_path, language):
    if not audio_path:
        return "No audio detected.", None, None, None, None
    
    voice_text = voice_handler.process_audio_file(audio_path, language)
    if voice_text.startswith("Error:"):
        return voice_text, None, None, None, None
    
    context = memory_handler.get_context()
    details = gemini_processor.extract_request_details(voice_text, context)
    
    if not details:
        return "Could not extract request details. Please try again.", None, None, None, None
    
    memory_handler.add_interaction(voice_text, details)
    
    # Get any previously captured information
    partial_info = memory_handler.get_partial_info()
    
    return (
        f"Voice processed! You said: {voice_text}\n\n{memory_handler.get_prompt_for_missing_info()}",
        partial_info.get('project_number', ''),
        partial_info.get('project_name', ''),
        partial_info.get('amount', 0),
        partial_info.get('reason', '')
    )

def submit_request(project_number, project_name, amount, reason):
    is_valid, message = validate_request(project_number, project_name, amount, reason)
    if not is_valid:
        return message, None
    
    try:
        db.add_request(project_number, project_name, float(amount), reason)
        memory_handler.clear_memory()
        return "Request successfully added!", get_requests_df()
    except Exception as e:
        return f"Error saving request: {str(e)}", None

def get_requests_df():
    try:
        requests = db.get_all_requests()
        if requests:
            df = pd.DataFrame(requests)
            columns = ['timestamp', 'project_number', 'project_name', 'amount', 'reason']
            df = df[columns]
            # Convert DataFrame to list of lists format required by Gradio
            headers = df.columns.tolist()
            data = df.values.tolist()
            return {"headers": headers, "data": data}
        return {"headers": ['timestamp', 'project_number', 'project_name', 'amount', 'reason'], "data": []}
    except Exception as e:
        print(f"Error getting requests: {str(e)}")
        return {"headers": ['timestamp', 'project_number', 'project_name', 'amount', 'reason'], "data": []}

def create_ui():
    with gr.Blocks(title="AI Agent Money Request System") as app:
        gr.Markdown("# AI Agent Money Request System")
        
        with gr.Tab("Input"):
            language = gr.Dropdown(
                choices=["English", "Arabic", "Mixed (Arabic/English)"],
                value="English",
                label="Select Language"
            )
            
            with gr.Tab("Voice Input"):
                audio_input = gr.Audio(
                    label="Voice Input",
                    type="filepath",
                    sources=["microphone"]
                )
                voice_process_btn = gr.Button("Process Voice")
            
            with gr.Tab("Text Input"):
                text_input = gr.Textbox(
                    lines=3,
                    placeholder="Enter your request here...",
                    label="Text Input"
                )
                text_process_btn = gr.Button("Process Text")
            
            process_output = gr.Textbox(label="Processing Result")
            
            with gr.Group():
                project_number = gr.Textbox(label="Project Number")
                project_name = gr.Textbox(label="Project Name")
                amount = gr.Number(label="Amount (in riyals)")
                reason = gr.Textbox(label="Reason for Request")
                submit_btn = gr.Button("Submit Request")
            
            result_text = gr.Textbox(label="Submission Result")
        
        with gr.Tab("Existing Requests"):
            requests_table = gr.DataFrame(
                headers=["Timestamp", "Project Number", "Project Name", "Amount", "Reason"],
                label="Existing Requests"
            )
            refresh_btn = gr.Button("Refresh")
        
        # Event handlers
        text_process_btn.click(
            process_text_input,
            inputs=[text_input, language],
            outputs=[process_output, project_number, project_name, amount, reason]
        )
        
        voice_process_btn.click(
            process_voice_input,
            inputs=[audio_input, language],
            outputs=[process_output, project_number, project_name, amount, reason]
        )
        
        submit_btn.click(
            submit_request,
            inputs=[project_number, project_name, amount, reason],
            outputs=[result_text, requests_table]
        )
        
        refresh_btn.click(
            lambda: get_requests_df(),
            outputs=[requests_table]
        )
        
        # Initialize requests table
        requests_table.value = get_requests_df()
    
    return app

if __name__ == "__main__":
    app = create_ui()
    app.launch()