import streamlit as st from transformers import pipeline # Load the conversational model from Hugging Face chatbot = pipeline('conversational', model='microsoft/DialoGPT-medium') # Initialize session state for storing the conversation if 'conversation' not in st.session_state: st.session_state.conversation = [] # Streamlit app layout st.title("Chatbot Application") user_input = st.text_input("You:", key="input") # if st.button("Send"): # if user_input: # # Append user input to the conversation # st.session_state.conversation.append({"role": "user", "content": user_input}) # # Generate response # response = chatbot(user_input) # bot_response = response[0]['generated_text'] # # Append bot response to the conversation # st.session_state.conversation.append({"role": "bot", "content": bot_response}) # # Display the conversation # for message in st.session_state.conversation: # if message["role"] == "user": # st.text_area("You:", value=message["content"], key=f"user_{message['content']}", height=50) # else: # st.text_area("Bot:", value=message["content"], key=f"bot_{message['content']}", height=50)