import os import pickle import torch import random import numpy as np import pandas as pd import gradio as gr from setfit import SetFitModel from huggingface_hub import login, hf_hub_download hf_token = os.getenv('hf_token') login(hf_token) def prepare_setfit_model(repo_id): model = SetFitModel.from_pretrained(repo_id) id2cat_path = hf_hub_download(repo_id, filename='id2cat.pkl') with open(id2cat_path, "rb") as file: id2cat = pickle.load(file) cat2id_path = hf_hub_download(repo_id, filename='cat2id.pkl') with open(cat2id_path, "rb") as file: cat2id = pickle.load(file) cat_name_path = hf_hub_download(repo_id, filename='cat_name.csv') df_cat = pd.read_csv(cat_name_path) return model, id2cat, cat2id, df_cat cat1_model, cat1_id2cat, cat1_cat2id, df_cat = prepare_setfit_model(os.getenv('cat1_repo_id')) cat2_model, cat2_id2cat, cat2_cat2id, df_cat = prepare_setfit_model(os.getenv('cat2_repo_id')) cid_model, cid_id2cat, cid_cat2id, df_cat = prepare_setfit_model(os.getenv('cid_repo_id')) # - def model_predict(model, sentence): with torch.no_grad(): predict_result = model.predict_proba(sentence).cpu().detach().numpy() sorted_ids = np.argsort(predict_result)[::-1] sorted_probs = np.sort(predict_result)[::-1] return sorted_ids, sorted_probs # + def run_prediction(sentence, state): sorted_cat1_ids, sorted_cat1_probs = model_predict(cat1_model, sentence) sorted_cat2_ids, sorted_cat2_probs = model_predict(cat2_model, sentence) sorted_cid_ids, sorted_cid_probs = model_predict(cid_model, sentence) sorted_cat1_ids = [cat1_id2cat[item] for item in sorted_cat1_ids] sorted_cat2_ids = [cat2_id2cat[item] for item in sorted_cat2_ids] sorted_cid_ids = [cid_id2cat[item] for item in sorted_cid_ids] cat1_names = ['select'] + list(map(id2catname.get, sorted_cat1_ids)) cat2_names = ['select'] + list(map(id2catname.get, sorted_cat2_ids)) cid_names = ['select'] + list(map(id2catname.get, sorted_cid_ids)) state['cat1_names'] = cat1_names state['sorted_cat1_probs'] = sorted_cat1_probs state['cat2_names'] = cat2_names state['sorted_cat2_probs'] = sorted_cat2_probs state['cid_names'] = cid_names state['sorted_cid_probs'] = sorted_cid_probs return gr.Dropdown.update( choices = cat1_names, value = cat1_names[0], interactive=True ), gr.Dropdown.update( choices = cat2_names, value = cat2_names[0], interactive=True ), gr.Dropdown.update( choices = cid_names, value = cid_names[0], interactive=True ), state def filter_cat2(cat1_name, state): cat2_names = [] cat2_list = parent_cat_map.get(cat1_name) for item in state['cat2_names']: if item in cat2_list and item not in cat2_names: cat2_names.append(item) cat2_names = ['select'] + cat2_names return gr.Dropdown.update( choices=cat2_names, value=cat2_names[0], interactive=True ), state def filter_cid(cat2_name, state): cid_names = [] cid_list = parent_cat_map.get(cat2_name) if cid_list is None: return gr.Dropdown.update( choices=['None'], value='None', interactive=False ) for item in state['cid_names']: if item in cid_list and item not in cid_names: cid_names.append(item) cid_names = ['select'] + cid_names return gr.Dropdown.update( choices=cid_names, value=cid_names[0], interactive=True ) # def predict_with_title_and_description(title, description): # temp_list = list(locations.keys()) # random.shuffle(temp_list) # countries = ['select'] + temp_list # return gr.Dropdown.update( # choices=countries, value=countries[0], interactive=True # ) parent_cat = df_cat[['id', 'name']] parent_cat.columns = ['temp_id', 'parent_name'] df_cat = pd.merge(df_cat, parent_cat, left_on='parent_id', right_on='temp_id', how='left').drop('temp_id', axis=1) id2catname = {item['id']:item['name'] for item in df_cat[['id', 'name']].to_dict(orient='records')} parent_cat_map = {} for item in df_cat[['parent_name', 'name']].to_dict(orient='records'): if item['parent_name'] in parent_cat_map: parent_cat_map[item['parent_name']].append(item['name']) else: parent_cat_map[item['parent_name']] = [item['name']] with gr.Blocks() as demo: prediction_results = gr.State({}) with gr.Tab(label="Predict by title") as t1: title = gr.Textbox(label='Service Title', placeholder='Please enter service title') d1 = gr.Dropdown(choices = list(), label="Cat 1") d2 = gr.Dropdown(choices = list(), label='Cat 2') d3 = gr.Dropdown(choices = list(), label="CID") b1 = gr.Button() b1.click(run_prediction, [title, prediction_results], [d1, d2, d3, prediction_results]) d1.select(filter_cat2, [d1, prediction_results], [d2, prediction_results]) d2.select(filter_cid, [d2, prediction_results], d3) # with gr.Tab(label="Predict by title and description") as t2: # title = gr.Textbox(label='Service Title', placeholder='Please enter service title') # description = gr.Textbox(label='Service Description', placeholder="Please enter service description") # d1 = gr.Dropdown(choices = list(locations.keys()), label="Country") # d2 = gr.Dropdown(choices = list(), label='State') # d3 = gr.Dropdown(choices = list(), label="City") # b1 = gr.Button() # b1.click(predict_with_title_and_description, [title, description], d1) # d1.change(filter_states, d1, d2) # d2.change(filter_cities, [d1, d2], d3) demo.queue(max_size=5).launch()