File size: 12,084 Bytes
df7eba9
 
 
 
 
 
 
 
1f85a54
 
df7eba9
 
 
 
 
 
 
 
 
1f85a54
 
 
 
 
 
 
 
 
 
a8dea68
1f85a54
 
 
 
 
df7eba9
 
1f85a54
df7eba9
 
 
 
 
1f85a54
df7eba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f85a54
 
df7eba9
 
 
 
1f85a54
df7eba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ba2119
df7eba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f85a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df7eba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f85a54
df7eba9
 
 
1f85a54
df7eba9
1f85a54
df7eba9
1f85a54
df7eba9
1f85a54
df7eba9
 
1f85a54
df7eba9
1f85a54
df7eba9
1f85a54
df7eba9
1f85a54
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import os
import sys
import time
import urllib.request
import json
import random
import requests
from voice import voice_dict
from dotenv import load_dotenv
load_dotenv('credentials.env')
OPENAPI_KEY = os.getenv('OPENAPI_KEY')
CLOVA_VOICE_Client_ID = os.getenv('CLOVA_VOICE_Client_ID')
CLOVA_VOICE_Client_Secret = os.getenv('CLOVA_VOICE_Client_Secret')
PAPAGO_Translate_Client_ID = os.getenv('PAPAGO_Translate_Client_ID')
PAPAGO_Translate_Client_Secret = os.getenv('PAPAGO_Translate_Client_Secret')
mubert_pat = os.getenv('mubert_pat')
SUMMARY_Client_ID = os.getenv('SUMMARY_Client_ID')
SUMMARY_Client_Secret = os.getenv('SUMMARY_Client_Secret')

import time
import os
import subprocess
from tempfile import NamedTemporaryFile

import torch
from audiocraft.data.audio import audio_write
from audiocraft.models import MusicGen

# Using small model, better results would be obtained with `medium` or `large`.
model = MusicGen.get_pretrained('facebook/musicgen-melody')
model.set_generation_params(
    use_sampling=True,
    top_k=250,
    duration=30
)


def get_voice(input_text:str, gender:str="female", age_group:str="youth", speed:int=1, pitch:int=1, alpha:int=-1, filename="voice.mp3"):
    """
    gender: female or male
    age_group: child, teenager, youth, middle_aged
    """
    speaker = random.choice(voice_dict[gender][age_group])
    data = {"speaker":speaker, "text":input_text, 'speed':speed, 'pitch':pitch, 'alpha':alpha}
    url = "https://naveropenapi.apigw.ntruss.com/tts-premium/v1/tts"
    headers = {
        "X-NCP-APIGW-API-KEY-ID": CLOVA_VOICE_Client_ID,
        "X-NCP-APIGW-API-KEY": CLOVA_VOICE_Client_Secret,
    }
    response = requests.post(url, headers=headers, data=data)
    if response.status_code == 200:
        print("TTS mp3 μ €μž₯")
        response_body = response.content
        with open(filename, 'wb') as f:
            f.write(response_body)
    else:
        print("Error Code: " + str(response.status_code))
        print("Error Message: " + str(response.json()))
    return filename
    
def translate_text(text:str):
    
    encText = urllib.parse.quote(text)
    data = f"source=ko&target=en&text={encText}"
    url = "https://naveropenapi.apigw.ntruss.com/nmt/v1/translation"
    
    request = urllib.request.Request(url)
    request.add_header("X-NCP-APIGW-API-KEY-ID", PAPAGO_Translate_Client_ID)
    request.add_header("X-NCP-APIGW-API-KEY", PAPAGO_Translate_Client_Secret)
    
    try:
        response = urllib.request.urlopen(request, data=data.encode("utf-8"))
        response_body = response.read()
        return json.loads(response_body.decode('utf-8'))['message']['result']['translatedText']
    except urllib.error.HTTPError as e:
        return f"Error Code: {e.code}"


# -

def get_summary(input_text:str, summary_count:int = 5):
    if len(input_text) > 2000:
        input_text = input_text[:2000]
    input_text = input_text.strip()
        
    data = {
          "document": {
            "content": input_text
          },
          "option": {
            "language": "ko",
            "model": "general",
            "tone": "0",
            "summaryCount": summary_count
          }
        }
    url = "https://naveropenapi.apigw.ntruss.com/text-summary/v1/summarize"
    headers = {
        "X-NCP-APIGW-API-KEY-ID": SUMMARY_Client_ID,
        "X-NCP-APIGW-API-KEY": SUMMARY_Client_Secret,
        "Content-Type": "application/json"
    }
    response = requests.post(url, headers=headers, data=json.dumps(data))
    if response.status_code == 200:
        return ' '.join(response.json()['summary'].split('\n'))
    elif response.status_code == 400 and response.json()['error']['errorCode'] == 'E100':
        return input_text
    else:
        print("Error Code: " + str(response.status_code))
        print("Error Message: " + str(response.json()))

def get_mubert_music(text, duration=300):
    print('original text length: ', len(text))
    summary = get_summary(text, 3)
    print('summary text length: ', len(summary))
    translated_text = translate_text(summary)
    print('translated_text length: ', len(translated_text))
    if len(translated_text) > 200:
        translated_text = translated_text[:200]
        
    r = requests.post('https://api-b2b.mubert.com/v2/TTMRecordTrack', 
        json={
            "method":"TTMRecordTrack",
            "params":
            {
                "text":translated_text,
                "pat":mubert_pat,
                "mode":"track",
                "duration":duration, 
                "bitrate":128
            }
        })

    rdata = json.loads(r.text)
    if rdata['status'] == 1:
        url = rdata['data']['tasks'][0]['download_link']
        
        done = False
        while not done:
            r = requests.post('https://api-b2b.mubert.com/v2/TrackStatus', 
            json={
                "method":"TrackStatus",
                "params":
                        {
                            "pat":mubert_pat
                        }
            })
            
            if r.json()['data']['tasks'][0]['task_status_text'] == 'Done':
                done = True
                time.sleep(2)
            
        # return url
        local_filename = "mubert_music.mp3"
        headers = {
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"
        }
        
        download = False
        while not download:
            response = requests.get(url, stream=True, headers=headers)
            
            if response.status_code == 200:
                download=True
                time.sleep(1)

        if response.status_code == 404:
            print("파일이 μ‘΄μž¬ν•˜μ§€ μ•ŠμŠ΅λ‹ˆλ‹€.")
            return
        elif response.status_code != 200:
            print(f"파일 λ‹€μš΄λ‘œλ“œμ— μ‹€νŒ¨ν•˜μ˜€μŠ΅λ‹ˆλ‹€. μ—λŸ¬ μ½”λ“œ: {response.status_code}")
            return

        with open(local_filename, "wb") as f:
            for chunk in response.iter_content(chunk_size=8192):
                if chunk:
                    f.write(chunk)
        print(f"{local_filename} 파일이 μ €μž₯λ˜μ—ˆμŠ΅λ‹ˆλ‹€.")
        return local_filename

def get_musicgen_music(text, duration=300):
    file_name = 'musicgen_output.wav'
    print('original text length: ', len(text))
    summary = get_summary(text, 3)
    print('summary text length: ', len(summary))
    translated_text = translate_text(summary)
    print('translated_text length: ', len(translated_text))
    if len(translated_text) > 200:
        translated_text = translated_text[:200]
    print(translated_text)
    start = time.time()
    overlap = 5
    music_length = 30
    target_length = duration
    desc = [translated_text]
    print(model.sample_rate)
    output = model.generate(descriptions=desc, progress=True)
    while music_length < target_length:
        last_sec = output[:, :, int(-overlap*model.sample_rate):]
        cont = model.generate_continuation(last_sec, model.sample_rate, descriptions=desc, progress=True)
        output = torch.cat([output[:, :, :int(-overlap*model.sample_rate)], cont], 2)
        music_length = output.shape[2] / model.sample_rate
    if music_length > target_length:
        output = output[:, :, :int(target_length*model.sample_rate)]

    output = output.detach().cpu().float()[0]
    audio_write(
        file_name, output, model.sample_rate, strategy="loudness",
        loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)

    print(f'Elapsed time: {time.time() - start}')
    return file_name

# def get_story(first_sentence:str, history, num_sentences:int):
#     response = requests.post("https://api.openai.com/v1/chat/completions", 
#                             headers={"Content-Type": "application/json", "Authorization": f"Bearer {OPENAPI_KEY}"},
#                             data=json.dumps({
#                                 "model": "gpt-3.5-turbo",
#                                 "messages": [{"role": "system", "content": "You are a helpful assistant."}, 
#                                             {"role": "user", "content": f"""I will provide the first sentence of the novel, and please write {num_sentences} sentences continuing the story in a first-person protagonist's perspective in Korean. Don't number the sentences.
#                                             \n\nStory: {first_sentence}"""}]
#                             }))
#     print(response.json())
#     return response.json()['choices'][0]['message']['content']

def get_story(first_sentence:str, num_sentences:int, chatbot=[], history=[]):
    history.append(first_sentence)
    # make a POST request to the API endpoint using the requests.post method, passing in stream=True
    response = requests.post("https://api.openai.com/v1/chat/completions", 
                            headers={"Content-Type": "application/json", "Authorization": f"Bearer {OPENAPI_KEY}"},
                             stream=True,
                            data=json.dumps({
                                "stream": True,
                                "model": "gpt-3.5-turbo",
                                "messages": [{"role": "system", "content": "You are a helpful assistant."}, 
                                            {"role": "user", "content": f"""I will provide the first sentence of the novel, and please write {num_sentences} sentences continuing the story in a first-person protagonist's perspective in Korean. Don't number the sentences.
                                            \n\nFirst sentence: {first_sentence}"""}]
                            }))

    token_counter = 0 
    partial_words = "" 
    counter=0
    for chunk in response.iter_lines():
        #Skipping first chunk
        if counter == 0:
            counter+=1
            continue
        # check whether each line is non-empty
        if chunk.decode() :
            chunk = chunk.decode()
          # decode each line as response data is in bytes
            if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
                partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
                if token_counter == 0:
                    history.append(" " + partial_words)
                else:
                    history[-1] = partial_words
                chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ]  # convert to tuples of list
                token_counter+=1
                yield chat, history, response


def get_voice_filename(text, gender, age, speed, pitch, alpha):
    filename = None
    if gender == '남성':
        if age == "어린이":
            filename = get_voice(text, gender="male", age_group="child", speed=speed, pitch=pitch, alpha=alpha, filename="voice.mp3")
        elif age == "μ²­μ†Œλ…„":
            filename = get_voice(text, gender="male", age_group="teenager", speed=speed, pitch=pitch, alpha=alpha, filename="voice.mp3")
        elif age == "μ²­λ…„":
            filename = get_voice(text, gender="male", age_group="youth", speed=speed, pitch=pitch, alpha=alpha, filename="voice.mp3")
        elif age == "쀑년":
            filename = get_voice(text, gender="male", age_group="middle_aged", speed=speed, pitch=pitch, alpha=alpha, filename="voice.mp3")
    else:
        if age == "어린이":
            filename = get_voice(text, gender="female", age_group="child", speed=speed, pitch=pitch, alpha=alpha, filename="voice.mp3")
        elif age == "μ²­μ†Œλ…„":
            filename = get_voice(text, gender="female", age_group="teenager", speed=speed, pitch=pitch, alpha=alpha, filename="voice.mp3")
        elif age == "μ²­λ…„":
            filename = get_voice(text, gender="female", age_group="youth", speed=speed, pitch=pitch, alpha=alpha, filename="voice.mp3")
        elif age == "쀑년":
            filename = get_voice(text, gender="female", age_group="middle_aged", speed=speed, pitch=pitch, alpha=alpha, filename="voice.mp3")
    return filename