sharjeel1477 commited on
Commit
00cd58e
·
1 Parent(s): 24eee70
Files changed (1) hide show
  1. ask.py +19 -5
ask.py CHANGED
@@ -4,6 +4,7 @@ from langchain import OpenAI
4
  import os
5
  from llama_index.langchain_helpers.agents import IndexToolConfig, LlamaIndexTool, LlamaToolkit, create_llama_chat_agent
6
  from langchain.chains.conversation.memory import ConversationBufferMemory
 
7
 
8
 
9
  # logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
@@ -13,31 +14,44 @@ pinecone_key=os.environ['PINECONE_KEY']
13
  def askQuestion(brain, question, prompt, temperature, maxTokens):
14
  temperature = float(temperature)
15
  finalQuestion = prompt+question
16
- print(brain, finalQuestion, temperature, maxTokens)
 
 
 
17
  Brain_Name = brain.lower()
18
  print(Brain_Name)
19
  pinecone.init(api_key=pinecone_key,
20
  environment="us-west4-gcp")
21
  pineconeindex = pinecone.Index(Brain_Name)
 
22
  index = GPTPineconeIndex([], pinecone_index=pineconeindex)
23
  # index = GPTSimpleVectorIndex.load_from_disk('index.json')
24
 
25
  # For Q-A set this value to 4, For Content-Genration set this value b/w 7-10.
26
  data_chunks = 5
27
 
28
- # prompt query goes here
29
- # query="summarize in full detail the solution that dimetyd is providing, and previous email sequences which can be used as a context knowledge"
30
- query = finalQuestion
 
 
 
 
 
 
 
 
31
  # relevant info from brain goes here
32
  info = ["pdf"]
33
 
34
  llm_predictor = LLMPredictor(llm=OpenAI(
35
  temperature=temperature, model_name="text-davinci-003", max_tokens=maxTokens))
 
36
  service_context_gpt4 = ServiceContext.from_defaults(
37
  llm_predictor=llm_predictor)
38
 
39
  response = index.query(query, service_context=service_context_gpt4,
40
- similarity_top_k=data_chunks, response_mode="compact")
41
  print(question)
42
  print(response)
43
  memory = ConversationBufferMemory(memory_key="chat_history")
 
4
  import os
5
  from llama_index.langchain_helpers.agents import IndexToolConfig, LlamaIndexTool, LlamaToolkit, create_llama_chat_agent
6
  from langchain.chains.conversation.memory import ConversationBufferMemory
7
+ from llama_index import QuestionAnswerPrompt
8
 
9
 
10
  # logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
 
14
  def askQuestion(brain, question, prompt, temperature, maxTokens):
15
  temperature = float(temperature)
16
  finalQuestion = prompt+question
17
+ print(finalQuestion)
18
+ print(temperature, maxTokens)
19
+ #print(type(temperature))
20
+ #print(type(maxTokens))
21
  Brain_Name = brain.lower()
22
  print(Brain_Name)
23
  pinecone.init(api_key=pinecone_key,
24
  environment="us-west4-gcp")
25
  pineconeindex = pinecone.Index(Brain_Name)
26
+ pineconeindex.describe_index_stats
27
  index = GPTPineconeIndex([], pinecone_index=pineconeindex)
28
  # index = GPTSimpleVectorIndex.load_from_disk('index.json')
29
 
30
  # For Q-A set this value to 4, For Content-Genration set this value b/w 7-10.
31
  data_chunks = 5
32
 
33
+ QA_PROMPT_TMPL = (
34
+ "We have provided context information below. \n"
35
+ "---------------------\n"
36
+ "{context_str}"
37
+ "\n---------------------\n"
38
+ "Given this information, please answer the question at the end of this main prompt: "+prompt+" {query_str}\n"
39
+ )
40
+
41
+ QA_PROMPT = QuestionAnswerPrompt(QA_PROMPT_TMPL)
42
+
43
+ query = question
44
  # relevant info from brain goes here
45
  info = ["pdf"]
46
 
47
  llm_predictor = LLMPredictor(llm=OpenAI(
48
  temperature=temperature, model_name="text-davinci-003", max_tokens=maxTokens))
49
+
50
  service_context_gpt4 = ServiceContext.from_defaults(
51
  llm_predictor=llm_predictor)
52
 
53
  response = index.query(query, service_context=service_context_gpt4,
54
+ similarity_top_k=data_chunks, response_mode="compact",text_qa_template=QA_PROMPT)
55
  print(question)
56
  print(response)
57
  memory = ConversationBufferMemory(memory_key="chat_history")