File size: 7,825 Bytes
2bb9056 721e8b5 2bb9056 721e8b5 2bb9056 721e8b5 2bb9056 721e8b5 2bb9056 7c3b051 2bb9056 721e8b5 2bb9056 721e8b5 2bb9056 721e8b5 2bb9056 721e8b5 2bb9056 1b92ee6 7c3b051 1b92ee6 7c3b051 1b92ee6 7c3b051 1b92ee6 7c3b051 1b92ee6 2bb9056 721e8b5 7c3b051 2bb9056 7c3b051 2bb9056 721e8b5 7c3b051 721e8b5 7c3b051 2bb9056 7c3b051 2bb9056 721e8b5 2bb9056 7c3b051 2bb9056 7c3b051 2bb9056 721e8b5 2bb9056 7c3b051 2bb9056 721e8b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import gradio as gr
import weaviate
from weaviate.embedded import EmbeddedOptions
import os
from openai import AsyncOpenAI
from dotenv import load_dotenv
import textwrap
import asyncio
import aiohttp
from functools import wraps
# Load environment variables
load_dotenv()
# Set up AsyncOpenAI client
openai_client = AsyncOpenAI(api_key=os.getenv('OPENAI_API_KEY'))
# Connect to Weaviate
client = weaviate.Client(
url=os.getenv('WCS_URL'),
auth_client_secret=weaviate.auth.AuthApiKey(os.getenv('WCS_API_KEY')),
additional_headers={
"X-OpenAI-Api-Key": os.getenv('OPENAI_API_KEY')
}
)
# Get the collection name from environment variable
COLLECTION_NAME = os.getenv('WEAVIATE_COLLECTION_NAME')
# Async-compatible caching decorator
def async_lru_cache(maxsize=128):
cache = {}
def decorator(func):
@wraps(func)
async def wrapper(*args, **kwargs):
key = str(args) + str(kwargs)
if key not in cache:
if len(cache) >= maxsize:
cache.pop(next(iter(cache)))
cache[key] = await func(*args, **kwargs)
return cache[key]
return wrapper
return decorator
@async_lru_cache(maxsize=1000)
async def get_embedding(text):
response = await openai_client.embeddings.create(
input=text,
model="text-embedding-3-large"
)
return response.data[0].embedding
async def search_multimodal(query: str, limit: int = 30, alpha: float = 0.6):
query_vector = await get_embedding(query)
try:
response = await asyncio.to_thread(
client.query.get(COLLECTION_NAME, ["content_type", "url", "source_document", "page_number",
"paragraph_number", "text", "image_path", "description", "table_content"])
.with_hybrid(query=query, vector=query_vector, alpha=alpha)
.with_limit(limit)
.do
)
return response['data']['Get'][COLLECTION_NAME]
except Exception as e:
print(f"An error occurred during the search: {str(e)}")
return []
async def generate_response(query: str, context: str) -> str:
prompt = f"""
You are an AI assistant with extensive expertise in the semiconductor industry. Your knowledge spans a wide range of companies, technologies, and products, including but not limited to: System-on-Chip (SoC) designs, Field-Programmable Gate Arrays (FPGAs), Microcontrollers, Integrated Circuits (ICs), semiconductor manufacturing processes, and emerging technologies like quantum computing and neuromorphic chips.
Use the following context, your vast knowledge, and the user's question to generate an accurate, comprehensive, and insightful answer. While formulating your response, follow these steps internally:
Analyze the question to identify the main topic and specific information requested.
Evaluate the provided context and identify relevant information.
Retrieve additional relevant knowledge from your semiconductor industry expertise.
Reason and formulate a response by combining context and knowledge.
Generate a detailed response that covers all aspects of the query.
Review and refine your answer for coherence and accuracy.
In your output, provide only the final, polished response. Do not include your step-by-step reasoning or mention the process you followed.
IMPORTANT: Ensure your response is grounded in factual information. Do not hallucinate or invent information. If you're unsure about any aspect of the answer or if the necessary information is not available in the provided context or your knowledge base, clearly state this uncertainty. It's better to admit lack of information than to provide inaccurate details.
Your response should be:
Thorough and directly address all aspects of the user's question
Based solely on factual information from the provided context and your reliable knowledge
Include specific examples, data points, or case studies only when you're certain of their accuracy
Explain technical concepts clearly, considering the user may have varying levels of expertise
Clearly indicate any areas where information is limited or uncertain
Context: {context}
User Question: {query}
Based on the above context and your extensive knowledge of the semiconductor industry, provide your detailed, accurate, and grounded response below. Remember, only include information you're confident is correct, and clearly state any uncertainties:
"""
response = await openai_client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": "You are an expert Semi Conductor industry analyst"},
{"role": "user", "content": prompt}
],
temperature=0
)
return response.choices[0].message.content
def process_search_result(item):
if item['content_type'] == 'text':
return f"Text from {item['source_document']} (Page {item['page_number']}, Paragraph {item['paragraph_number']}): {item['text']}\n\n"
elif item['content_type'] == 'image':
return f"Image Description from {item['source_document']} (Page {item['page_number']}, Path: {item['image_path']}): {item['description']}\n\n"
elif item['content_type'] == 'table':
return f"Table Description from {item['source_document']} (Page {item['page_number']}): {item['description']}\n\n"
return ""
async def esg_analysis(user_query: str):
search_results = await search_multimodal(user_query)
context_parts = await asyncio.gather(*[asyncio.to_thread(process_search_result, item) for item in search_results])
context = "".join(context_parts)
response = await generate_response(user_query, context)
sources = []
for item in search_results[:5]: # Limit to top 5 sources
source = {
"type": item.get("content_type", "Unknown"),
"document": item.get("source_document", "N/A"),
"page": item.get("page_number", "N/A"),
}
if item.get("content_type") == 'text':
source["paragraph"] = item.get("paragraph_number", "N/A")
elif item.get("content_type") == 'image':
source["image_path"] = item.get("image_path", "N/A")
sources.append(source)
return response, sources
def wrap_text(text, width=120):
return textwrap.fill(text, width=width)
async def gradio_interface(user_question):
ai_response, sources = await esg_analysis(user_question)
# Format AI response
formatted_response = f"""
## AI Response
{ai_response}
"""
# Format sources
source_text = "## Top 5 Sources\n\n"
for i, source in enumerate(sources, 1):
source_text += f"### Source {i}\n"
source_text += f"- **Type:** {source['type']}\n"
source_text += f"- **Document:** {source['document']}\n"
source_text += f"- **Page:** {source['page']}\n"
if 'paragraph' in source:
source_text += f"- **Paragraph:** {source['paragraph']}\n"
if 'image_path' in source:
source_text += f"- **Image Path:** {source['image_path']}\n"
source_text += "\n"
return formatted_response, source_text
iface = gr.Interface(
fn=lambda user_question: asyncio.run(gradio_interface(user_question)),
inputs=gr.Textbox(lines=2, placeholder="Enter your question about the semiconductor industry..."),
outputs=[
gr.Markdown(label="AI Response"),
gr.Markdown(label="Sources")
],
title="Semiconductor Industry ESG Analysis",
description="Ask questions about the semiconductor industry and get AI-powered answers with sources.",
flagging_dir="/app/flagged" # Specify the flagging directory
)
if __name__ == "__main__":
iface.launch(server_name="0.0.0.0", server_port=7860, share=True) |