Spaces:
Running
Running
Linoy Tsaban
commited on
Commit
·
d19d91b
1
Parent(s):
5d7ba0f
Update utils.py
Browse files
utils.py
CHANGED
@@ -3,7 +3,7 @@ from PIL import Image, ImageDraw ,ImageFont
|
|
3 |
from matplotlib import pyplot as plt
|
4 |
import torchvision.transforms as T
|
5 |
import os
|
6 |
-
import torch
|
7 |
import yaml
|
8 |
|
9 |
def show_torch_img(img):
|
@@ -20,14 +20,14 @@ def tensor_to_pil(tensor_imgs):
|
|
20 |
tensor_imgs = torch.cat(tensor_imgs)
|
21 |
tensor_imgs = (tensor_imgs / 2 + 0.5).clamp(0, 1)
|
22 |
to_pil = T.ToPILImage()
|
23 |
-
pil_imgs = [to_pil(img) for img in tensor_imgs]
|
24 |
return pil_imgs
|
25 |
|
26 |
def pil_to_tensor(pil_imgs):
|
27 |
to_torch = T.ToTensor()
|
28 |
if type(pil_imgs) == PIL.Image.Image:
|
29 |
tensor_imgs = to_torch(pil_imgs).unsqueeze(0)*2-1
|
30 |
-
elif type(pil_imgs) == list:
|
31 |
tensor_imgs = torch.cat([to_torch(pil_imgs).unsqueeze(0)*2-1 for img in pil_imgs]).to(device)
|
32 |
else:
|
33 |
raise Exception("Input need to be PIL.Image or list of PIL.Image")
|
@@ -40,30 +40,30 @@ def pil_to_tensor(pil_imgs):
|
|
40 |
# num_col = n // num_rows
|
41 |
# num_col = num_col + 1 if n % num_rows else num_col
|
42 |
# num_col
|
43 |
-
def add_margin(pil_img, top = 0, right = 0, bottom = 0,
|
44 |
left = 0, color = (255,255,255)):
|
45 |
width, height = pil_img.size
|
46 |
new_width = width + right + left
|
47 |
new_height = height + top + bottom
|
48 |
result = Image.new(pil_img.mode, (new_width, new_height), color)
|
49 |
-
|
50 |
result.paste(pil_img, (left, top))
|
51 |
return result
|
52 |
|
53 |
-
def image_grid(imgs, rows = 1, cols = None,
|
54 |
size = None,
|
55 |
titles = None, text_pos = (0, 0)):
|
56 |
if type(imgs) == list and type(imgs[0]) == torch.Tensor:
|
57 |
imgs = torch.cat(imgs)
|
58 |
if type(imgs) == torch.Tensor:
|
59 |
imgs = tensor_to_pil(imgs)
|
60 |
-
|
61 |
if not size is None:
|
62 |
imgs = [img.resize((size,size)) for img in imgs]
|
63 |
if cols is None:
|
64 |
cols = len(imgs)
|
65 |
assert len(imgs) >= rows*cols
|
66 |
-
|
67 |
top=20
|
68 |
w, h = imgs[0].size
|
69 |
delta = 0
|
@@ -71,23 +71,23 @@ def image_grid(imgs, rows = 1, cols = None,
|
|
71 |
delta = top
|
72 |
h = imgs[1].size[1]
|
73 |
if not titles is None:
|
74 |
-
font = ImageFont.truetype("/usr/share/fonts/truetype/freefont/FreeMono.ttf",
|
75 |
size = 20, encoding="unic")
|
76 |
-
h = top + h
|
77 |
-
grid = Image.new('RGB', size=(cols*w, rows*h+delta))
|
78 |
for i, img in enumerate(imgs):
|
79 |
-
|
80 |
if not titles is None:
|
81 |
img = add_margin(img, top = top, bottom = 0,left=0)
|
82 |
draw = ImageDraw.Draw(img)
|
83 |
-
draw.text(text_pos, titles[i],(0,0,0),
|
84 |
font = font)
|
85 |
if not delta == 0 and i > 0:
|
86 |
grid.paste(img, box=(i%cols*w, i//cols*h+delta))
|
87 |
else:
|
88 |
grid.paste(img, box=(i%cols*w, i//cols*h))
|
89 |
-
|
90 |
-
return grid
|
91 |
|
92 |
|
93 |
"""
|
|
|
3 |
from matplotlib import pyplot as plt
|
4 |
import torchvision.transforms as T
|
5 |
import os
|
6 |
+
import torch
|
7 |
import yaml
|
8 |
|
9 |
def show_torch_img(img):
|
|
|
20 |
tensor_imgs = torch.cat(tensor_imgs)
|
21 |
tensor_imgs = (tensor_imgs / 2 + 0.5).clamp(0, 1)
|
22 |
to_pil = T.ToPILImage()
|
23 |
+
pil_imgs = [to_pil(img) for img in tensor_imgs]
|
24 |
return pil_imgs
|
25 |
|
26 |
def pil_to_tensor(pil_imgs):
|
27 |
to_torch = T.ToTensor()
|
28 |
if type(pil_imgs) == PIL.Image.Image:
|
29 |
tensor_imgs = to_torch(pil_imgs).unsqueeze(0)*2-1
|
30 |
+
elif type(pil_imgs) == list:
|
31 |
tensor_imgs = torch.cat([to_torch(pil_imgs).unsqueeze(0)*2-1 for img in pil_imgs]).to(device)
|
32 |
else:
|
33 |
raise Exception("Input need to be PIL.Image or list of PIL.Image")
|
|
|
40 |
# num_col = n // num_rows
|
41 |
# num_col = num_col + 1 if n % num_rows else num_col
|
42 |
# num_col
|
43 |
+
def add_margin(pil_img, top = 0, right = 0, bottom = 0,
|
44 |
left = 0, color = (255,255,255)):
|
45 |
width, height = pil_img.size
|
46 |
new_width = width + right + left
|
47 |
new_height = height + top + bottom
|
48 |
result = Image.new(pil_img.mode, (new_width, new_height), color)
|
49 |
+
|
50 |
result.paste(pil_img, (left, top))
|
51 |
return result
|
52 |
|
53 |
+
def image_grid(imgs, rows = 1, cols = None,
|
54 |
size = None,
|
55 |
titles = None, text_pos = (0, 0)):
|
56 |
if type(imgs) == list and type(imgs[0]) == torch.Tensor:
|
57 |
imgs = torch.cat(imgs)
|
58 |
if type(imgs) == torch.Tensor:
|
59 |
imgs = tensor_to_pil(imgs)
|
60 |
+
|
61 |
if not size is None:
|
62 |
imgs = [img.resize((size,size)) for img in imgs]
|
63 |
if cols is None:
|
64 |
cols = len(imgs)
|
65 |
assert len(imgs) >= rows*cols
|
66 |
+
|
67 |
top=20
|
68 |
w, h = imgs[0].size
|
69 |
delta = 0
|
|
|
71 |
delta = top
|
72 |
h = imgs[1].size[1]
|
73 |
if not titles is None:
|
74 |
+
font = ImageFont.truetype("/usr/share/fonts/truetype/freefont/FreeMono.ttf",
|
75 |
size = 20, encoding="unic")
|
76 |
+
h = top + h
|
77 |
+
grid = Image.new('RGB', size=(cols*w, rows*h+delta))
|
78 |
for i, img in enumerate(imgs):
|
79 |
+
|
80 |
if not titles is None:
|
81 |
img = add_margin(img, top = top, bottom = 0,left=0)
|
82 |
draw = ImageDraw.Draw(img)
|
83 |
+
draw.text(text_pos, titles[i],(0,0,0),
|
84 |
font = font)
|
85 |
if not delta == 0 and i > 0:
|
86 |
grid.paste(img, box=(i%cols*w, i//cols*h+delta))
|
87 |
else:
|
88 |
grid.paste(img, box=(i%cols*w, i//cols*h))
|
89 |
+
|
90 |
+
return grid
|
91 |
|
92 |
|
93 |
"""
|