Spaces:
Sleeping
Sleeping
import datasets | |
from datasets import load_dataset | |
import gradio as gr | |
import torch | |
from transformers import Trainer, TrainingArguments | |
from transformers import AutoModelForImageClassification | |
import numpy as np | |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification | |
dataset = load_dataset('beans') # This should be the same as the first line of Python code in this Colab notebook | |
extractor = AutoFeatureExtractor.from_pretrained("saved_model_files") | |
model = AutoModelForImageClassification.from_pretrained("saved_model_files") | |
labels = dataset['train'].features['labels'].names | |
def classify(im): | |
features = image_processor(im, return_tensors='pt') | |
logits = model(features["pixel_values"])[-1] | |
probability = torch.nn.functional.softmax(logits, dim=-1) | |
probs = probability[0].detach().numpy() | |
confidences = {label: float(probs[i]) for i, label in enumerate(labels)} | |
return confidences | |
# Run the Gradio interface for the app | |
interface = gr.Interface( | |
fn=classify, | |
inputs=["image"], | |
outputs=["label"], | |
title="Leaf disaease classifier", | |
description="A pre-trained vit model for classifying leaf diseases" | |
) | |
interface.launch(debug=True) |