shatrunjai commited on
Commit
3ecd966
·
1 Parent(s): 5243167

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -0
app.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datasets
2
+ import gradio as gr
3
+ from transformers import AutoFeatureExtractor, AutoModelForImageClassification
4
+
5
+ dataset = load_dataset('beans') # This should be the same as the first line of Python code in this Colab notebook
6
+
7
+ extractor = AutoFeatureExtractor.from_pretrained("saved_model_files")
8
+ model = AutoModelForImageClassification.from_pretrained("saved_model_files")
9
+
10
+ labels = dataset['train'].features['labels'].names
11
+
12
+ def classify(im):
13
+ features = image_processor(im, return_tensors='pt')
14
+ logits = model(features["pixel_values"])[-1]
15
+ probability = torch.nn.functional.softmax(logits, dim=-1)
16
+ probs = probability[0].detach().numpy()
17
+ confidences = {label: float(probs[i]) for i, label in enumerate(labels)}
18
+ return confidences
19
+
20
+ # Run the Gradio interface for the app
21
+ interface = gr.Interface(
22
+ fn=classify,
23
+ inputs=["image"],
24
+ outputs=["label"],
25
+ title="Leaf disaease classifier",
26
+ description="A pre-trained vit model for classifying leaf diseases"
27
+ )
28
+
29
+ interface.launch(debug=True)